{"title":"37 号钢在 0.1 N H2SO4 中动态条件下的腐蚀行为","authors":"Alaa A. A, Dhuha Albusalih","doi":"10.5614/j.eng.technol.sci.2023.55.6.2","DOIUrl":null,"url":null,"abstract":"An aggressive environment has a substantial effect on the progression of corrosion on metal surfaces and alloys. This study investigated the effect of one of the parameters that affect the corrosion process, the stirring rate, on the behavior of Steel 37 in 0.1 N of sulfuric acid. The main method used in this study is an electrochemical method (using a potentiostat at a scan rate of 3 MV.sec-1), applied at three different temperatures (25, 30, and ˚C). To evaluate the parameters of corrosion in this study, the Tafel extrapolation method was used. At a constant stirring rate, the corrosion current density was found to be increased with increasing temperature at a constant stirring rate. In addition, the corrosion rate increased with increasing stirring rate at a constant temperature due to the rise of the diffusion coefficient of oxygen. The Levich equation was used to calculate the limiting current densities, as well as the mass transfer coefficient (Km) and the Sherwood number (Sh). The Km values were calculated and it was found that the mass transfer coefficient was greater at higher temperatures and stirring rates. The results also revealed that the smallest values of Sh (2.575, 3.897) occurred at 30 °C at two stirring rates (200 and 400 rpm).","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion Behavior of Steel 37 under Dynamic Conditions in 0.1 N H2SO4\",\"authors\":\"Alaa A. A, Dhuha Albusalih\",\"doi\":\"10.5614/j.eng.technol.sci.2023.55.6.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An aggressive environment has a substantial effect on the progression of corrosion on metal surfaces and alloys. This study investigated the effect of one of the parameters that affect the corrosion process, the stirring rate, on the behavior of Steel 37 in 0.1 N of sulfuric acid. The main method used in this study is an electrochemical method (using a potentiostat at a scan rate of 3 MV.sec-1), applied at three different temperatures (25, 30, and ˚C). To evaluate the parameters of corrosion in this study, the Tafel extrapolation method was used. At a constant stirring rate, the corrosion current density was found to be increased with increasing temperature at a constant stirring rate. In addition, the corrosion rate increased with increasing stirring rate at a constant temperature due to the rise of the diffusion coefficient of oxygen. The Levich equation was used to calculate the limiting current densities, as well as the mass transfer coefficient (Km) and the Sherwood number (Sh). The Km values were calculated and it was found that the mass transfer coefficient was greater at higher temperatures and stirring rates. The results also revealed that the smallest values of Sh (2.575, 3.897) occurred at 30 °C at two stirring rates (200 and 400 rpm).\",\"PeriodicalId\":15689,\"journal\":{\"name\":\"Journal of Engineering and Technological Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering and Technological Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/j.eng.technol.sci.2023.55.6.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Technological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.eng.technol.sci.2023.55.6.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
腐蚀性环境对金属表面和合金的腐蚀过程有很大影响。本研究调查了影响腐蚀过程的参数之一--搅拌速率对钢 37 在 0.1 N 硫酸中的行为的影响。本研究采用的主要方法是电化学方法(使用恒电位仪,扫描速率为 3 MV.sec-1),在三个不同的温度(25、30 和 ˚C)下进行。本研究采用塔菲尔外推法评估腐蚀参数。在恒定搅拌速率下,发现腐蚀电流密度随着温度的升高而增加。此外,在恒定温度下,由于氧气扩散系数的增加,腐蚀速率随搅拌速率的增加而增加。Levich 方程用于计算极限电流密度以及传质系数 (Km) 和舍伍德数 (Sh)。通过计算 Km 值发现,温度和搅拌速率越高,传质系数越大。结果还显示,在两种搅拌速率(200 rpm 和 400 rpm)下,30 °C 时的 Sh 值最小(2.575, 3.897)。
Corrosion Behavior of Steel 37 under Dynamic Conditions in 0.1 N H2SO4
An aggressive environment has a substantial effect on the progression of corrosion on metal surfaces and alloys. This study investigated the effect of one of the parameters that affect the corrosion process, the stirring rate, on the behavior of Steel 37 in 0.1 N of sulfuric acid. The main method used in this study is an electrochemical method (using a potentiostat at a scan rate of 3 MV.sec-1), applied at three different temperatures (25, 30, and ˚C). To evaluate the parameters of corrosion in this study, the Tafel extrapolation method was used. At a constant stirring rate, the corrosion current density was found to be increased with increasing temperature at a constant stirring rate. In addition, the corrosion rate increased with increasing stirring rate at a constant temperature due to the rise of the diffusion coefficient of oxygen. The Levich equation was used to calculate the limiting current densities, as well as the mass transfer coefficient (Km) and the Sherwood number (Sh). The Km values were calculated and it was found that the mass transfer coefficient was greater at higher temperatures and stirring rates. The results also revealed that the smallest values of Sh (2.575, 3.897) occurred at 30 °C at two stirring rates (200 and 400 rpm).
期刊介绍:
Journal of Engineering and Technological Sciences welcomes full research articles in the area of Engineering Sciences from the following subject areas: Aerospace Engineering, Biotechnology, Chemical Engineering, Civil Engineering, Electrical Engineering, Engineering Physics, Environmental Engineering, Industrial Engineering, Information Engineering, Mechanical Engineering, Material Science and Engineering, Manufacturing Processes, Microelectronics, Mining Engineering, Petroleum Engineering, and other application of physical, biological, chemical and mathematical sciences in engineering. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.