利用非精确信息,通过近端交替线性化方案解决一类非光滑非凸优化问题

Ming Huang, Yue He, Pingping Qiao, Siqi Zhang, Yongxiu Feng
{"title":"利用非精确信息,通过近端交替线性化方案解决一类非光滑非凸优化问题","authors":"Ming Huang, Yue He, Pingping Qiao, Siqi Zhang, Yongxiu Feng","doi":"10.56028/aetr.9.1.497.2024","DOIUrl":null,"url":null,"abstract":"For optimization problems minimizing the sum of two nonconvex and nonsmooth functions, we propose an alternate linearization method with inexact data. In many practical optimization applications, only the inexact information of the function can be obtained. The core idea of this method is to add a quadratic function term to the nonconvex function(called local convexification of nonconvex function), and then to construct an approximate proximal point model. In each iteration, a series of iteration points are obtained by solving subproblems alternately. It can be proved that, in the sense of inexact oracles, these iteration points converge to the stable point of the original problem, and theoretically show that the algorithm has good convergent properties.","PeriodicalId":355471,"journal":{"name":"Advances in Engineering Technology Research","volume":"283 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving a Class of Nonsmooth Nonconvex Optimization Problems Via Proximal Alternating Linearization Scheme with Inexact Information\",\"authors\":\"Ming Huang, Yue He, Pingping Qiao, Siqi Zhang, Yongxiu Feng\",\"doi\":\"10.56028/aetr.9.1.497.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For optimization problems minimizing the sum of two nonconvex and nonsmooth functions, we propose an alternate linearization method with inexact data. In many practical optimization applications, only the inexact information of the function can be obtained. The core idea of this method is to add a quadratic function term to the nonconvex function(called local convexification of nonconvex function), and then to construct an approximate proximal point model. In each iteration, a series of iteration points are obtained by solving subproblems alternately. It can be proved that, in the sense of inexact oracles, these iteration points converge to the stable point of the original problem, and theoretically show that the algorithm has good convergent properties.\",\"PeriodicalId\":355471,\"journal\":{\"name\":\"Advances in Engineering Technology Research\",\"volume\":\"283 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Engineering Technology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56028/aetr.9.1.497.2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56028/aetr.9.1.497.2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于最小化两个非凸非光滑函数之和的优化问题,我们提出了一种使用非精确数据的替代线性化方法。在许多实际优化应用中,只能获得函数的非精确信息。该方法的核心思想是在非凸函数中加入二次函数项(称为非凸函数的局部凸化),然后构建近似的近似点模型。在每次迭代中,通过交替求解子问题得到一系列迭代点。可以证明,在不精确神谕的意义上,这些迭代点收敛于原问题的稳定点,并从理论上证明了该算法具有良好的收敛特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solving a Class of Nonsmooth Nonconvex Optimization Problems Via Proximal Alternating Linearization Scheme with Inexact Information
For optimization problems minimizing the sum of two nonconvex and nonsmooth functions, we propose an alternate linearization method with inexact data. In many practical optimization applications, only the inexact information of the function can be obtained. The core idea of this method is to add a quadratic function term to the nonconvex function(called local convexification of nonconvex function), and then to construct an approximate proximal point model. In each iteration, a series of iteration points are obtained by solving subproblems alternately. It can be proved that, in the sense of inexact oracles, these iteration points converge to the stable point of the original problem, and theoretically show that the algorithm has good convergent properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Response Characteristics of GPR Method for Detecting Phreatic Lines in Embankments Research on the composition of glass relics based on CART model Research on component content model of ancient glass products based on statistical analysis The Significance of Big Data to the Design and Transformation of Rural Art Space Coupled Vibration Analysis of a Beam-Arch Composite Continuous Rigid Structure with Parallel Traffic Flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1