基于不断增长的自组织地图和公共 GPS 数据构建步道网络

IF 0.6 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Knowledge-Based and Intelligent Engineering Systems Pub Date : 2024-01-25 DOI:10.3233/kes-230153
Jared Macshane, Ali Ahmadinia
{"title":"基于不断增长的自组织地图和公共 GPS 数据构建步道网络","authors":"Jared Macshane, Ali Ahmadinia","doi":"10.3233/kes-230153","DOIUrl":null,"url":null,"abstract":"Manual creation of trail maps for hikers is time-consuming and can be inaccurate. This paper presents a new method to construct trail networks based on a growing self-organizing map (GSOM) using publicly available Global Positioning System (GPS) data. Unlike other network topology construction techniques, this approach is not dependent on sequential GPS traces. Fine-tuning multiple hyperparameters enables to customize this process based on unique features of datasets and networks. The generated maps, which are trained on public GPS data, are compared to a ground truth from Open Street Map (OSM). The performance evaluation is based on the accuracy, completeness, and topological correctness of the trail maps. The proposed approach outperforms, particularly on sparse networks without significant GPS noise.","PeriodicalId":44076,"journal":{"name":"International Journal of Knowledge-Based and Intelligent Engineering Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of trail networks based on growing self-organizing maps and public GPS data\",\"authors\":\"Jared Macshane, Ali Ahmadinia\",\"doi\":\"10.3233/kes-230153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manual creation of trail maps for hikers is time-consuming and can be inaccurate. This paper presents a new method to construct trail networks based on a growing self-organizing map (GSOM) using publicly available Global Positioning System (GPS) data. Unlike other network topology construction techniques, this approach is not dependent on sequential GPS traces. Fine-tuning multiple hyperparameters enables to customize this process based on unique features of datasets and networks. The generated maps, which are trained on public GPS data, are compared to a ground truth from Open Street Map (OSM). The performance evaluation is based on the accuracy, completeness, and topological correctness of the trail maps. The proposed approach outperforms, particularly on sparse networks without significant GPS noise.\",\"PeriodicalId\":44076,\"journal\":{\"name\":\"International Journal of Knowledge-Based and Intelligent Engineering Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Knowledge-Based and Intelligent Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/kes-230153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Knowledge-Based and Intelligent Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/kes-230153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

为徒步旅行者手动绘制路径地图既费时又可能不准确。本文提出了一种新方法,利用可公开获取的全球定位系统(GPS)数据,在不断增长的自组织地图(GSOM)基础上构建路径网络。与其他网络拓扑构建技术不同,这种方法不依赖于连续的 GPS 轨迹。通过微调多个超参数,可以根据数据集和网络的独特特征定制这一过程。根据公共 GPS 数据训练生成的地图与来自开放街道地图(OSM)的地面实况进行了比较。性能评估基于路径地图的准确性、完整性和拓扑正确性。所提出的方法性能优越,尤其是在没有明显 GPS 噪音的稀疏网络中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Construction of trail networks based on growing self-organizing maps and public GPS data
Manual creation of trail maps for hikers is time-consuming and can be inaccurate. This paper presents a new method to construct trail networks based on a growing self-organizing map (GSOM) using publicly available Global Positioning System (GPS) data. Unlike other network topology construction techniques, this approach is not dependent on sequential GPS traces. Fine-tuning multiple hyperparameters enables to customize this process based on unique features of datasets and networks. The generated maps, which are trained on public GPS data, are compared to a ground truth from Open Street Map (OSM). The performance evaluation is based on the accuracy, completeness, and topological correctness of the trail maps. The proposed approach outperforms, particularly on sparse networks without significant GPS noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
22
期刊最新文献
On the optimal multi-objective design of fractional order PID controller with antlion optimization Eternal 1-security number of a fuzzy graph with level J Interval type-2 fuzzy approach for retinopathy detection in fundus images DeepGAN: Utilizing generative adversarial networks for improved deep learning Fast retrieval of multi-modal embeddings for e-commerce applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1