古巴消费物价指数预测槽式变压器,敬请关注

Reynaldo Rosado, O. G. Toledano-López, Hector Gonzalez, A. J. Abreu, Yanio Hernandez
{"title":"古巴消费物价指数预测槽式变压器,敬请关注","authors":"Reynaldo Rosado, O. G. Toledano-López, Hector Gonzalez, A. J. Abreu, Yanio Hernandez","doi":"10.14313/jamris/2-2023/11","DOIUrl":null,"url":null,"abstract":"Recently, time series forecasting modelling in the Consumer Price Index (CPI) has attracted the attention of the scientific community. Several researches have tackled the problem of CPI prediction for their countries using statistical learning, machine learning and deep neural networks. The most popular approach to CPI in several countries is the Autoregressive Integrated Moving Average (ARIMA) due to the nature of the data. This paper addresses the Cuban CPI forecasting problem using Transformer with attention model over univariate dataset. The fine tuning of the lag parameter show that Cuban CPI have better performance with smalls lag and the best result was in $p=1$. Finally, the comparative results between ARIMA and our proposal show that the Transformer with attention has a very high performance despite having a small data set.","PeriodicalId":37910,"journal":{"name":"Journal of Automation, Mobile Robotics and Intelligent Systems","volume":"136 2-3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cuban Consumer Price Index Forecasting Trough Transformer with Attention\",\"authors\":\"Reynaldo Rosado, O. G. Toledano-López, Hector Gonzalez, A. J. Abreu, Yanio Hernandez\",\"doi\":\"10.14313/jamris/2-2023/11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, time series forecasting modelling in the Consumer Price Index (CPI) has attracted the attention of the scientific community. Several researches have tackled the problem of CPI prediction for their countries using statistical learning, machine learning and deep neural networks. The most popular approach to CPI in several countries is the Autoregressive Integrated Moving Average (ARIMA) due to the nature of the data. This paper addresses the Cuban CPI forecasting problem using Transformer with attention model over univariate dataset. The fine tuning of the lag parameter show that Cuban CPI have better performance with smalls lag and the best result was in $p=1$. Finally, the comparative results between ARIMA and our proposal show that the Transformer with attention has a very high performance despite having a small data set.\",\"PeriodicalId\":37910,\"journal\":{\"name\":\"Journal of Automation, Mobile Robotics and Intelligent Systems\",\"volume\":\"136 2-3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Automation, Mobile Robotics and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14313/jamris/2-2023/11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation, Mobile Robotics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14313/jamris/2-2023/11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

最近,消费者价格指数(CPI)的时间序列预测建模引起了科学界的关注。一些研究利用统计学习、机器学习和深度神经网络解决了本国的 CPI 预测问题。由于数据的性质,一些国家最流行的 CPI 方法是自回归综合移动平均法(ARIMA)。本文利用单变量数据集上的注意力模型 Transformer 来解决古巴的 CPI 预测问题。对滞后参数的微调表明,古巴消费物价指数在较小滞后时具有较好的性能,在 p=1 美元时效果最好。最后,ARIMA 与我们的建议之间的比较结果表明,尽管数据集较小,但注意力转换器具有非常高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cuban Consumer Price Index Forecasting Trough Transformer with Attention
Recently, time series forecasting modelling in the Consumer Price Index (CPI) has attracted the attention of the scientific community. Several researches have tackled the problem of CPI prediction for their countries using statistical learning, machine learning and deep neural networks. The most popular approach to CPI in several countries is the Autoregressive Integrated Moving Average (ARIMA) due to the nature of the data. This paper addresses the Cuban CPI forecasting problem using Transformer with attention model over univariate dataset. The fine tuning of the lag parameter show that Cuban CPI have better performance with smalls lag and the best result was in $p=1$. Finally, the comparative results between ARIMA and our proposal show that the Transformer with attention has a very high performance despite having a small data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Automation, Mobile Robotics and Intelligent Systems
Journal of Automation, Mobile Robotics and Intelligent Systems Engineering-Control and Systems Engineering
CiteScore
1.10
自引率
0.00%
发文量
25
期刊介绍: Fundamentals of automation and robotics Applied automatics Mobile robots control Distributed systems Navigation Mechatronics systems in robotics Sensors and actuators Data transmission Biomechatronics Mobile computing
期刊最新文献
A Numerical Analysis Based Internet of Things (IOT) and Big Data Analytics to Minimize Energy Consumption in Smart Buildings Design of Small-Phase Time-Variant Low-pass Digital Fractional Differentiators and Integrators Comparative Analysis of CNN-Based Smart Pre-Trained Models for Object Detection on DOTA Research to Simulate the Ship’s Vibration Regeneration System using a 6-Degree Freedom Gough-Stewart Parallel Robot Effective Nonlinear Predictive and CTC-PID Control of Rigid Manipulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1