通过数字 MPPT 控制和深度学习辐射预测调整光伏系统的新模型

A. Zouhri, M. el Mallahi
{"title":"通过数字 MPPT 控制和深度学习辐射预测调整光伏系统的新模型","authors":"A. Zouhri, M. el Mallahi","doi":"10.14313/2-2023/17","DOIUrl":null,"url":null,"abstract":"Forecasting solar radiation is one of the most useful impacts that can give us a deep vision on maintaining the integrity of solar systems. The availability and ease of use of the data make this process simpler. Predictions may be produced using various data sources. In fact, there are two different forms that can be identified. The first one was the use of historical solar radiation data, while the second one was the use of other meteorological parameters. The availability and choice of the data source can have an effect on the choice of the model and methods used. Our proposed article aims to take research as an example to review the solar radiation situation in Morocco and outline the methods of predicting solar radiation using different machine learning and deep learning methods like ANN, MLP, BPNN, DNN, and LSTM, which are used in different regions in Morocco.","PeriodicalId":37910,"journal":{"name":"Journal of Automation, Mobile Robotics and Intelligent Systems","volume":"377 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Model of Photovoltaic System Adapted by a Digital MPPT Control and Radiation Predictions Using Deep Learning\",\"authors\":\"A. Zouhri, M. el Mallahi\",\"doi\":\"10.14313/2-2023/17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forecasting solar radiation is one of the most useful impacts that can give us a deep vision on maintaining the integrity of solar systems. The availability and ease of use of the data make this process simpler. Predictions may be produced using various data sources. In fact, there are two different forms that can be identified. The first one was the use of historical solar radiation data, while the second one was the use of other meteorological parameters. The availability and choice of the data source can have an effect on the choice of the model and methods used. Our proposed article aims to take research as an example to review the solar radiation situation in Morocco and outline the methods of predicting solar radiation using different machine learning and deep learning methods like ANN, MLP, BPNN, DNN, and LSTM, which are used in different regions in Morocco.\",\"PeriodicalId\":37910,\"journal\":{\"name\":\"Journal of Automation, Mobile Robotics and Intelligent Systems\",\"volume\":\"377 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Automation, Mobile Robotics and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14313/2-2023/17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation, Mobile Robotics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14313/2-2023/17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

太阳辐射预报是最有用的影响之一,可以让我们深入了解如何维护太阳系的完整性。数据的可用性和易用性使这一过程变得更加简单。可以利用各种数据源进行预测。事实上,可以确定有两种不同的形式。第一种是使用历史太阳辐射数据,第二种是使用其他气象参数。数据源的可用性和选择会对所用模型和方法的选择产生影响。我们建议的文章旨在以研究为例,回顾摩洛哥的太阳辐射情况,并概述使用不同机器学习和深度学习方法预测太阳辐射的方法,如在摩洛哥不同地区使用的 ANN、MLP、BPNN、DNN 和 LSTM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New Model of Photovoltaic System Adapted by a Digital MPPT Control and Radiation Predictions Using Deep Learning
Forecasting solar radiation is one of the most useful impacts that can give us a deep vision on maintaining the integrity of solar systems. The availability and ease of use of the data make this process simpler. Predictions may be produced using various data sources. In fact, there are two different forms that can be identified. The first one was the use of historical solar radiation data, while the second one was the use of other meteorological parameters. The availability and choice of the data source can have an effect on the choice of the model and methods used. Our proposed article aims to take research as an example to review the solar radiation situation in Morocco and outline the methods of predicting solar radiation using different machine learning and deep learning methods like ANN, MLP, BPNN, DNN, and LSTM, which are used in different regions in Morocco.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Automation, Mobile Robotics and Intelligent Systems
Journal of Automation, Mobile Robotics and Intelligent Systems Engineering-Control and Systems Engineering
CiteScore
1.10
自引率
0.00%
发文量
25
期刊介绍: Fundamentals of automation and robotics Applied automatics Mobile robots control Distributed systems Navigation Mechatronics systems in robotics Sensors and actuators Data transmission Biomechatronics Mobile computing
期刊最新文献
A Numerical Analysis Based Internet of Things (IOT) and Big Data Analytics to Minimize Energy Consumption in Smart Buildings Design of Small-Phase Time-Variant Low-pass Digital Fractional Differentiators and Integrators Comparative Analysis of CNN-Based Smart Pre-Trained Models for Object Detection on DOTA Research to Simulate the Ship’s Vibration Regeneration System using a 6-Degree Freedom Gough-Stewart Parallel Robot Effective Nonlinear Predictive and CTC-PID Control of Rigid Manipulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1