钢包内衬材料对低频精炼过程中杀铝钢中夹杂物演变的影响

IF 1.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY High Temperature Materials and Processes Pub Date : 2024-01-01 DOI:10.1515/htmp-2022-0317
Fu-bin Gao, Xinbo Yan, Fu-ming Wang, Xin-hua Wang, Jianli Li
{"title":"钢包内衬材料对低频精炼过程中杀铝钢中夹杂物演变的影响","authors":"Fu-bin Gao, Xinbo Yan, Fu-ming Wang, Xin-hua Wang, Jianli Li","doi":"10.1515/htmp-2022-0317","DOIUrl":null,"url":null,"abstract":"\n The effect of lining materials (Al2O3 and Al2O3–MgO·Al2O3) of ladle on evolution of non-metallic inclusions in aluminum-killed (Al-killed) steel during ladle furnace refining without Ca treatment was investigated through industrial experiments. The results showed that non-metallic inclusions experienced the changes from Al2O3 → MgO–Al2O3 → CaO–Al2O3. During the refining process using either of the two ladle lining materials, for all non-metallic inclusions, the vast majority are distributed in the high Al2O3 area of the CaO–Al2O3–MgO phase diagram, with very little or none in the low melting point zone. Non-metallic inclusions are mainly smaller than 3 μm, while those larger than 3 μm consisted primarily of MgO·Al2O3 and CaO–Al2O3 inclusions. The use of an Al2O3–MgO·Al2O3-lining ladle is more effective in reducing the number density of inclusions in the steel. However, during the refining process, the Al2O3-lining ladle does not have a significant impact on the presence of MgO–Al2O3 and CaO–Al2O3 inclusions in the molten steel. The Al2O3–MgO·Al2O3-lining ladle does not have a significant effect on MgO–Al2O3 inclusions, but it does promote the formation of CaO–Al2O3 and CaS inclusions in the molten steel.","PeriodicalId":12966,"journal":{"name":"High Temperature Materials and Processes","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of ladle-lining materials on inclusion evolution in Al-killed steel during LF refining\",\"authors\":\"Fu-bin Gao, Xinbo Yan, Fu-ming Wang, Xin-hua Wang, Jianli Li\",\"doi\":\"10.1515/htmp-2022-0317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The effect of lining materials (Al2O3 and Al2O3–MgO·Al2O3) of ladle on evolution of non-metallic inclusions in aluminum-killed (Al-killed) steel during ladle furnace refining without Ca treatment was investigated through industrial experiments. The results showed that non-metallic inclusions experienced the changes from Al2O3 → MgO–Al2O3 → CaO–Al2O3. During the refining process using either of the two ladle lining materials, for all non-metallic inclusions, the vast majority are distributed in the high Al2O3 area of the CaO–Al2O3–MgO phase diagram, with very little or none in the low melting point zone. Non-metallic inclusions are mainly smaller than 3 μm, while those larger than 3 μm consisted primarily of MgO·Al2O3 and CaO–Al2O3 inclusions. The use of an Al2O3–MgO·Al2O3-lining ladle is more effective in reducing the number density of inclusions in the steel. However, during the refining process, the Al2O3-lining ladle does not have a significant impact on the presence of MgO–Al2O3 and CaO–Al2O3 inclusions in the molten steel. The Al2O3–MgO·Al2O3-lining ladle does not have a significant effect on MgO–Al2O3 inclusions, but it does promote the formation of CaO–Al2O3 and CaS inclusions in the molten steel.\",\"PeriodicalId\":12966,\"journal\":{\"name\":\"High Temperature Materials and Processes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperature Materials and Processes\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/htmp-2022-0317\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature Materials and Processes","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/htmp-2022-0317","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过工业试验,研究了钢包内衬材料(Al2O3 和 Al2O3-MgO-Al2O3)对未经过 Ca 处理的钢包炉精炼过程中铝杀青钢(Al-killed)中非金属夹杂物演变的影响。结果表明,非金属夹杂物经历了从 Al2O3 → MgO-Al2O3 → CaO-Al2O3 的变化过程。在使用两种钢包内衬材料的精炼过程中,对于所有非金属夹杂物而言,绝大多数都分布在 CaO-Al2O3-MgO 相图中的高 Al2O3 区域,极少或没有分布在低熔点区域。非金属夹杂物主要小于 3 μm,而大于 3 μm 的主要由 MgO-Al2O3 和 CaO-Al2O3 夹杂物组成。使用 Al2O3-MgO-Al2O3 内衬钢包能更有效地降低钢中夹杂物的数量密度。然而,在精炼过程中,Al2O3 内衬钢包对钢水中 MgO-Al2O3 和 CaO-Al2O3 夹杂物的存在影响不大。以 Al2O3-MgO-Al2O3 为内衬的钢包对 MgO-Al2O3 夹杂物的影响不大,但会促进钢液中 CaO-Al2O3 和 CaS 夹杂物的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of ladle-lining materials on inclusion evolution in Al-killed steel during LF refining
The effect of lining materials (Al2O3 and Al2O3–MgO·Al2O3) of ladle on evolution of non-metallic inclusions in aluminum-killed (Al-killed) steel during ladle furnace refining without Ca treatment was investigated through industrial experiments. The results showed that non-metallic inclusions experienced the changes from Al2O3 → MgO–Al2O3 → CaO–Al2O3. During the refining process using either of the two ladle lining materials, for all non-metallic inclusions, the vast majority are distributed in the high Al2O3 area of the CaO–Al2O3–MgO phase diagram, with very little or none in the low melting point zone. Non-metallic inclusions are mainly smaller than 3 μm, while those larger than 3 μm consisted primarily of MgO·Al2O3 and CaO–Al2O3 inclusions. The use of an Al2O3–MgO·Al2O3-lining ladle is more effective in reducing the number density of inclusions in the steel. However, during the refining process, the Al2O3-lining ladle does not have a significant impact on the presence of MgO–Al2O3 and CaO–Al2O3 inclusions in the molten steel. The Al2O3–MgO·Al2O3-lining ladle does not have a significant effect on MgO–Al2O3 inclusions, but it does promote the formation of CaO–Al2O3 and CaS inclusions in the molten steel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Temperature Materials and Processes
High Temperature Materials and Processes 工程技术-材料科学:综合
CiteScore
2.50
自引率
0.00%
发文量
42
审稿时长
3.9 months
期刊介绍: High Temperature Materials and Processes offers an international publication forum for new ideas, insights and results related to high-temperature materials and processes in science and technology. The journal publishes original research papers and short communications addressing topics at the forefront of high-temperature materials research including processing of various materials at high temperatures. Occasionally, reviews of a specific topic are included. The journal also publishes special issues featuring ongoing research programs as well as symposia of high-temperature materials and processes, and other related research activities. Emphasis is placed on the multi-disciplinary nature of high-temperature materials and processes for various materials in a variety of states. Such a nature of the journal will help readers who wish to become acquainted with related subjects by obtaining information of various aspects of high-temperature materials research. The increasing spread of information on these subjects will also help to shed light on relevant topics of high-temperature materials and processes outside of readers’ own core specialties.
期刊最新文献
De-chlorination of poly(vinyl) chloride using Fe2O3 and the improvement of chlorine fixing ratio in FeCl2 by SiO2 addition Effect of ladle-lining materials on inclusion evolution in Al-killed steel during LF refining Synthesis of aluminium (Al) and alumina (Al2O3)-based graded material by gravity casting Effect of rare-earth Ce on the texture of non-oriented silicon steels Effect of grain size on fatigue strength of 304 stainless steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1