高稳定性结构的高精度数字图像相关测量技术研究

IF 3.1 Q1 Mathematics Applied Mathematics and Nonlinear Sciences Pub Date : 2024-01-01 DOI:10.2478/amns-2024-0539
Fenglong Yang, Bing Pan
{"title":"高稳定性结构的高精度数字图像相关测量技术研究","authors":"Fenglong Yang, Bing Pan","doi":"10.2478/amns-2024-0539","DOIUrl":null,"url":null,"abstract":"\n This study proposes a novel digital image processing system that combines a diffraction-limited resolution (DLRF)-based measurement technique with a windowed form-center tracking algorithm. To evaluate the accuracy of this system, this paper compares and analyzes the effectiveness of conventional digital image techniques and DLRF-based methods for deformation displacement measurements. In addition, the study includes thermal stability tests under ambient noise and uniform high temperature conditions to evaluate the stability performance of the system in a complex environment. The experimental results show that the DLRF-based digital image correlation method proposed in this study performs well in reducing the mean deviation (from a maximum of 5.17 × 10-3 to 1.73 × 10-3) and root-mean-square error (from a maximum of 5.14 × 10-3 to 0.75 × 10-3). It is worth noting that the DLRF method is faster in processing when using the single-precision format than the double-precision format, with a speedup of up to 1.05 times. In addition, the multiple displacement averaging processing method can effectively filter the noise in the test, and the noise effect is only in the range of 0 to 2 μm in most areas. In the analysis of test points 10-34 and 57-80, the displacement error is controlled within 5 μm, indicating that the modified structural analysis model can be used for on-orbit micrometer-scale thermal deformation analysis. The study proves the high accuracy and stability of the digital image system proposed in this paper in the measurement of deformation displacement, which provides adequate technical support for accurate measurement in related fields.","PeriodicalId":52342,"journal":{"name":"Applied Mathematics and Nonlinear Sciences","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on high-precision digital image correlation measurement techniques for highly stable structures\",\"authors\":\"Fenglong Yang, Bing Pan\",\"doi\":\"10.2478/amns-2024-0539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study proposes a novel digital image processing system that combines a diffraction-limited resolution (DLRF)-based measurement technique with a windowed form-center tracking algorithm. To evaluate the accuracy of this system, this paper compares and analyzes the effectiveness of conventional digital image techniques and DLRF-based methods for deformation displacement measurements. In addition, the study includes thermal stability tests under ambient noise and uniform high temperature conditions to evaluate the stability performance of the system in a complex environment. The experimental results show that the DLRF-based digital image correlation method proposed in this study performs well in reducing the mean deviation (from a maximum of 5.17 × 10-3 to 1.73 × 10-3) and root-mean-square error (from a maximum of 5.14 × 10-3 to 0.75 × 10-3). It is worth noting that the DLRF method is faster in processing when using the single-precision format than the double-precision format, with a speedup of up to 1.05 times. In addition, the multiple displacement averaging processing method can effectively filter the noise in the test, and the noise effect is only in the range of 0 to 2 μm in most areas. In the analysis of test points 10-34 and 57-80, the displacement error is controlled within 5 μm, indicating that the modified structural analysis model can be used for on-orbit micrometer-scale thermal deformation analysis. The study proves the high accuracy and stability of the digital image system proposed in this paper in the measurement of deformation displacement, which provides adequate technical support for accurate measurement in related fields.\",\"PeriodicalId\":52342,\"journal\":{\"name\":\"Applied Mathematics and Nonlinear Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Nonlinear Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amns-2024-0539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Nonlinear Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amns-2024-0539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新型数字图像处理系统,该系统结合了基于衍射极限分辨率(DLRF)的测量技术和窗口形心跟踪算法。为了评估该系统的准确性,本文比较并分析了传统数字图像技术和基于 DLRF 的变形位移测量方法的有效性。此外,研究还包括环境噪声和均匀高温条件下的热稳定性测试,以评估系统在复杂环境中的稳定性能。实验结果表明,本研究提出的基于 DLRF 的数字图像相关方法在降低平均偏差(从最大值 5.17 × 10-3 降至 1.73 × 10-3)和均方根误差(从最大值 5.14 × 10-3 降至 0.75 × 10-3)方面表现良好。值得注意的是,DLRF 方法在使用单精度格式时比使用双精度格式时处理速度更快,最多可加快 1.05 倍。此外,多重位移平均处理方法可以有效过滤测试中的噪声,大部分区域的噪声影响仅在 0 至 2 μm 范围内。在对测试点 10-34 和 57-80 的分析中,位移误差控制在 5 μm 以内,表明改进后的结构分析模型可用于在轨微米尺度热变形分析。该研究证明了本文提出的数字图像系统在变形位移测量中的高精度和稳定性,为相关领域的精确测量提供了充分的技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on high-precision digital image correlation measurement techniques for highly stable structures
This study proposes a novel digital image processing system that combines a diffraction-limited resolution (DLRF)-based measurement technique with a windowed form-center tracking algorithm. To evaluate the accuracy of this system, this paper compares and analyzes the effectiveness of conventional digital image techniques and DLRF-based methods for deformation displacement measurements. In addition, the study includes thermal stability tests under ambient noise and uniform high temperature conditions to evaluate the stability performance of the system in a complex environment. The experimental results show that the DLRF-based digital image correlation method proposed in this study performs well in reducing the mean deviation (from a maximum of 5.17 × 10-3 to 1.73 × 10-3) and root-mean-square error (from a maximum of 5.14 × 10-3 to 0.75 × 10-3). It is worth noting that the DLRF method is faster in processing when using the single-precision format than the double-precision format, with a speedup of up to 1.05 times. In addition, the multiple displacement averaging processing method can effectively filter the noise in the test, and the noise effect is only in the range of 0 to 2 μm in most areas. In the analysis of test points 10-34 and 57-80, the displacement error is controlled within 5 μm, indicating that the modified structural analysis model can be used for on-orbit micrometer-scale thermal deformation analysis. The study proves the high accuracy and stability of the digital image system proposed in this paper in the measurement of deformation displacement, which provides adequate technical support for accurate measurement in related fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics and Nonlinear Sciences
Applied Mathematics and Nonlinear Sciences Engineering-Engineering (miscellaneous)
CiteScore
2.90
自引率
25.80%
发文量
203
期刊最新文献
Research on Optimization of University English Practice Teaching Mode Based on Graph Structure in Online Learning Environment Effective Application of Information Technology in Physical Education Teaching in the Era of Big Data Research on Digital Distribution Network Micro-application and Precise Control of Distribution Operations Based on Grid Resource Business Center Differential Analysis of Stylistic Features in English Translation Teaching Based on Semantic Contrastive Analysis Research on Informatization Mode of Higher Education Management and Student Cultivation Mechanism in the Internet Era
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1