使用 IR-UWB 雷达传感器和机器学习技术进行人员计数

Ange Joel Nounga Njanda , Jocelyn Edinio Zacko Gbadoubissa , Emanuel Radoi , Ado Adamou Abba Ari , Roua Youssef , Aminou Halidou
{"title":"使用 IR-UWB 雷达传感器和机器学习技术进行人员计数","authors":"Ange Joel Nounga Njanda ,&nbsp;Jocelyn Edinio Zacko Gbadoubissa ,&nbsp;Emanuel Radoi ,&nbsp;Ado Adamou Abba Ari ,&nbsp;Roua Youssef ,&nbsp;Aminou Halidou","doi":"10.1016/j.sasc.2024.200095","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to detect and count people using impulse radio ultra-wideband radar and machine learning algorithms. However, the data quality, difficulty distinguishing human signals from noise and clutter, and instances where human presence is not detected make it challenging to count multiple humans. To overcome these challenges, we apply wavelet transformation to reduce signal size and use simple moving averages to eliminate noise. Next, we create features based on statistical and entropic properties of the signal and apply several classification algorithms, including ANN, Random Forest, KNN, XGBOOST, and multiple linear regression, to predict the number of people present. Our findings reveal that using the ANN classifier with the Daubechies 4 (db4) wavelet provides better results than other classifiers, with an accuracy rate of 99%. Additionally, filtering the data improves accuracy, and labeling the data after extracting essential characteristics significantly improves the model’s accuracy.</p></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"6 ","pages":"Article 200095"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772941924000243/pdfft?md5=157f931722794a82b7c54f187d1d02cb&pid=1-s2.0-S2772941924000243-main.pdf","citationCount":"0","resultStr":"{\"title\":\"People counting using IR-UWB radar sensors and machine learning techniques\",\"authors\":\"Ange Joel Nounga Njanda ,&nbsp;Jocelyn Edinio Zacko Gbadoubissa ,&nbsp;Emanuel Radoi ,&nbsp;Ado Adamou Abba Ari ,&nbsp;Roua Youssef ,&nbsp;Aminou Halidou\",\"doi\":\"10.1016/j.sasc.2024.200095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aims to detect and count people using impulse radio ultra-wideband radar and machine learning algorithms. However, the data quality, difficulty distinguishing human signals from noise and clutter, and instances where human presence is not detected make it challenging to count multiple humans. To overcome these challenges, we apply wavelet transformation to reduce signal size and use simple moving averages to eliminate noise. Next, we create features based on statistical and entropic properties of the signal and apply several classification algorithms, including ANN, Random Forest, KNN, XGBOOST, and multiple linear regression, to predict the number of people present. Our findings reveal that using the ANN classifier with the Daubechies 4 (db4) wavelet provides better results than other classifiers, with an accuracy rate of 99%. Additionally, filtering the data improves accuracy, and labeling the data after extracting essential characteristics significantly improves the model’s accuracy.</p></div>\",\"PeriodicalId\":101205,\"journal\":{\"name\":\"Systems and Soft Computing\",\"volume\":\"6 \",\"pages\":\"Article 200095\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772941924000243/pdfft?md5=157f931722794a82b7c54f187d1d02cb&pid=1-s2.0-S2772941924000243-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772941924000243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772941924000243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究旨在利用脉冲无线电超宽带雷达和机器学习算法探测和计算人数。然而,数据质量、从噪声和杂波中区分人类信号的难度,以及未检测到人类存在的情况,使得对多个人类进行计数具有挑战性。为了克服这些挑战,我们采用小波变换来缩小信号大小,并使用简单的移动平均来消除噪音。接下来,我们根据信号的统计和熵属性创建特征,并应用多种分类算法(包括 ANN、随机森林、KNN、XGBOOST 和多元线性回归)来预测存在的人数。我们的研究结果表明,使用带有 Daubechies 4 (db4) 小波的 ANN 分类器比其他分类器效果更好,准确率高达 99%。此外,对数据进行过滤可提高准确率,而在提取基本特征后对数据进行标注可显著提高模型的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
People counting using IR-UWB radar sensors and machine learning techniques

This study aims to detect and count people using impulse radio ultra-wideband radar and machine learning algorithms. However, the data quality, difficulty distinguishing human signals from noise and clutter, and instances where human presence is not detected make it challenging to count multiple humans. To overcome these challenges, we apply wavelet transformation to reduce signal size and use simple moving averages to eliminate noise. Next, we create features based on statistical and entropic properties of the signal and apply several classification algorithms, including ANN, Random Forest, KNN, XGBOOST, and multiple linear regression, to predict the number of people present. Our findings reveal that using the ANN classifier with the Daubechies 4 (db4) wavelet provides better results than other classifiers, with an accuracy rate of 99%. Additionally, filtering the data improves accuracy, and labeling the data after extracting essential characteristics significantly improves the model’s accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
A systematic assessment of sentiment analysis models on iraqi dialect-based texts An Enhancement of Bilateral Closed-Loop Functions in Stability Standards for Networked Control Systems with Transmission Delay Application of improved particle swarm optimization algorithm combined with genetic algorithm in shear wall design Path planning of factory handling robot integrating fuzzy logic-PID control technology Application of an intelligent English text classification model with improved KNN algorithm in the context of big data in libraries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1