{"title":"土壤生物膜的特征和环境应用:综述","authors":"Guoliang Wang, Tian Li, Qixing Zhou, Xiaoling Zhang, Ruixiang Li, Jinning Wang","doi":"10.1007/s10311-024-01735-1","DOIUrl":null,"url":null,"abstract":"<div><p>Despite the major influence of soils on climate change, carbon sequestration, pollution remediation, and food security, soil remains a largely unexplored media with an extreme complexity of microbes, minerals, and dead organic matter, most of them being actually poorly known. In particular, soil biofilms have recently attracted attention because they strongly influence biogeochemical reactions and processes. Here we review biofilms with focus on their behavior, proliferation, distribution, characterization methods, and applications. Characterization methods include optical, electron, scanning probe, and X-ray microscopy; metagenomics, metatranscriptomics, metaproteomics, metabolomics; and tracking approaches. Applications comprise pollution remediation by metal immobilization or organics degradation; and methane oxidation, carbon dioxide reduction, and carbon sequestration. Advanced methods such as DNA-stable isotope probing and meta-omics have uncovered the multiple functions of soil biofilms and their underlying molecular mechanisms. Investigations have improved our understanding of inter- and intra-kingdom interactions, and of gene transfer. Extracellular materials such as polysaccharides enhance the transport of substances and electrons flow among microorganisms.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"1989 - 2011"},"PeriodicalIF":15.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization and environmental applications of soil biofilms: a review\",\"authors\":\"Guoliang Wang, Tian Li, Qixing Zhou, Xiaoling Zhang, Ruixiang Li, Jinning Wang\",\"doi\":\"10.1007/s10311-024-01735-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite the major influence of soils on climate change, carbon sequestration, pollution remediation, and food security, soil remains a largely unexplored media with an extreme complexity of microbes, minerals, and dead organic matter, most of them being actually poorly known. In particular, soil biofilms have recently attracted attention because they strongly influence biogeochemical reactions and processes. Here we review biofilms with focus on their behavior, proliferation, distribution, characterization methods, and applications. Characterization methods include optical, electron, scanning probe, and X-ray microscopy; metagenomics, metatranscriptomics, metaproteomics, metabolomics; and tracking approaches. Applications comprise pollution remediation by metal immobilization or organics degradation; and methane oxidation, carbon dioxide reduction, and carbon sequestration. Advanced methods such as DNA-stable isotope probing and meta-omics have uncovered the multiple functions of soil biofilms and their underlying molecular mechanisms. Investigations have improved our understanding of inter- and intra-kingdom interactions, and of gene transfer. Extracellular materials such as polysaccharides enhance the transport of substances and electrons flow among microorganisms.</p></div>\",\"PeriodicalId\":541,\"journal\":{\"name\":\"Environmental Chemistry Letters\",\"volume\":\"22 4\",\"pages\":\"1989 - 2011\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Chemistry Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10311-024-01735-1\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-024-01735-1","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
尽管土壤对气候变化、碳封存、污染修复和食品安全具有重大影响,但土壤仍然是一个基本上未被探索的介质,其中微生物、矿物质和死亡有机物极其复杂,其中大多数实际上鲜为人知。特别是,土壤生物膜最近引起了人们的关注,因为它们对生物地球化学反应和过程有很大影响。在此,我们将对生物膜进行综述,重点关注其行为、增殖、分布、表征方法和应用。表征方法包括光学、电子、扫描探针和 X 射线显微镜;元基因组学、元转录组学、元蛋白组学、元代谢组学;以及追踪方法。应用包括通过金属固定或有机物降解进行污染修复,以及甲烷氧化、二氧化碳还原和碳封存。DNA 稳定同位素探测和元组学等先进方法揭示了土壤生物膜的多种功能及其潜在的分子机制。调查加深了我们对生物界内部和生物界之间的相互作用以及基因转移的理解。多糖等胞外物质增强了微生物之间的物质运输和电子流动。
Characterization and environmental applications of soil biofilms: a review
Despite the major influence of soils on climate change, carbon sequestration, pollution remediation, and food security, soil remains a largely unexplored media with an extreme complexity of microbes, minerals, and dead organic matter, most of them being actually poorly known. In particular, soil biofilms have recently attracted attention because they strongly influence biogeochemical reactions and processes. Here we review biofilms with focus on their behavior, proliferation, distribution, characterization methods, and applications. Characterization methods include optical, electron, scanning probe, and X-ray microscopy; metagenomics, metatranscriptomics, metaproteomics, metabolomics; and tracking approaches. Applications comprise pollution remediation by metal immobilization or organics degradation; and methane oxidation, carbon dioxide reduction, and carbon sequestration. Advanced methods such as DNA-stable isotope probing and meta-omics have uncovered the multiple functions of soil biofilms and their underlying molecular mechanisms. Investigations have improved our understanding of inter- and intra-kingdom interactions, and of gene transfer. Extracellular materials such as polysaccharides enhance the transport of substances and electrons flow among microorganisms.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.