利用磺化共聚物水凝胶有效去除污染水中的有害阳离子染料:合成、非线性等温线和动力学研究

IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Saudi Chemical Society Pub Date : 2024-04-04 DOI:10.1016/j.jscs.2024.101852
Hamud A. Altaleb
{"title":"利用磺化共聚物水凝胶有效去除污染水中的有害阳离子染料:合成、非线性等温线和动力学研究","authors":"Hamud A. Altaleb","doi":"10.1016/j.jscs.2024.101852","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a novel copolymer hydrogel according to poly (acrylonitrile-co-sodium styrene sulfonate) (ASD) as an effective adsorbent was prepared via free radical polymerization of the solution at a ratio of 1:1 to remove cationic crystal violet dye (CV) from wastewater. The prepared hydrogel was thoroughly characterized using FTIR, TGA, SEM and EDX analysis. The hydrogel that was produced has a notable capacity for adsorbing cationic dye uptake over a wide pH range as well as easily separated without the need for filtration and centrifugation. Under optimal conditions using 1 g/L of hydrogel, 400 mg/L dye concentration and contact time of 5 h, the prepared hydrogel showed high dye removal efficiency approaching 100 %. The sulfonated copolymer hydrogel has a maximum adsorption capacity of 518.49 mg/g, which is six times larger than pristine PAN. The Langmuir model properly represented the isotherm adsorption data, however the kinetics data was better described by the pseudo-second-order model. Based on the calculated thermodynamic characteristics, the process of CV dye adsorption on sulfonated copolymer hydrogel surface was<!--> <!-->spontaneous and exothermic.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 3","pages":"Article 101852"},"PeriodicalIF":5.8000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000474/pdfft?md5=5f23adda5c0057584a889bedd5f3efda&pid=1-s2.0-S1319610324000474-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effective removal of hazardous cationic dye from polluted water using sulfonated copolymer hydrogel: Synthesis, nonlinear isotherm, and kinetics investigation\",\"authors\":\"Hamud A. Altaleb\",\"doi\":\"10.1016/j.jscs.2024.101852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a novel copolymer hydrogel according to poly (acrylonitrile-co-sodium styrene sulfonate) (ASD) as an effective adsorbent was prepared via free radical polymerization of the solution at a ratio of 1:1 to remove cationic crystal violet dye (CV) from wastewater. The prepared hydrogel was thoroughly characterized using FTIR, TGA, SEM and EDX analysis. The hydrogel that was produced has a notable capacity for adsorbing cationic dye uptake over a wide pH range as well as easily separated without the need for filtration and centrifugation. Under optimal conditions using 1 g/L of hydrogel, 400 mg/L dye concentration and contact time of 5 h, the prepared hydrogel showed high dye removal efficiency approaching 100 %. The sulfonated copolymer hydrogel has a maximum adsorption capacity of 518.49 mg/g, which is six times larger than pristine PAN. The Langmuir model properly represented the isotherm adsorption data, however the kinetics data was better described by the pseudo-second-order model. Based on the calculated thermodynamic characteristics, the process of CV dye adsorption on sulfonated copolymer hydrogel surface was<!--> <!-->spontaneous and exothermic.</p></div>\",\"PeriodicalId\":16974,\"journal\":{\"name\":\"Journal of Saudi Chemical Society\",\"volume\":\"28 3\",\"pages\":\"Article 101852\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1319610324000474/pdfft?md5=5f23adda5c0057584a889bedd5f3efda&pid=1-s2.0-S1319610324000474-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Saudi Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319610324000474\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Saudi Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319610324000474","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究以 1:1 的比例通过自由基聚合溶液制备了一种新型共聚物水凝胶,该水凝胶以聚(丙烯腈-共苯乙烯磺酸钠)(ASD)为有效吸附剂,用于去除废水中的阳离子结晶紫染料(CV)。利用傅立叶变换红外光谱(FTIR)、热重分析(TGA)、扫描电镜(SEM)和乙二胺四乙酸氧化物分析对制备的水凝胶进行了全面表征。制备出的水凝胶在较宽的 pH 值范围内具有显著的吸附阳离子染料的能力,而且无需过滤和离心即可轻松分离。在 1 克/升水凝胶、400 毫克/升染料浓度和 5 小时接触时间的最佳条件下,所制备的水凝胶的染料去除率接近 100%。磺化共聚物水凝胶的最大吸附容量为 518.49 mg/g,是原始 PAN 的六倍。Langmuir 模型恰当地表示了等温吸附数据,而假二阶模型则更好地描述了动力学数据。根据计算得出的热力学特性,磺化共聚物水凝胶表面对 CV 染料的吸附过程是自发的、放热的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective removal of hazardous cationic dye from polluted water using sulfonated copolymer hydrogel: Synthesis, nonlinear isotherm, and kinetics investigation

In this study, a novel copolymer hydrogel according to poly (acrylonitrile-co-sodium styrene sulfonate) (ASD) as an effective adsorbent was prepared via free radical polymerization of the solution at a ratio of 1:1 to remove cationic crystal violet dye (CV) from wastewater. The prepared hydrogel was thoroughly characterized using FTIR, TGA, SEM and EDX analysis. The hydrogel that was produced has a notable capacity for adsorbing cationic dye uptake over a wide pH range as well as easily separated without the need for filtration and centrifugation. Under optimal conditions using 1 g/L of hydrogel, 400 mg/L dye concentration and contact time of 5 h, the prepared hydrogel showed high dye removal efficiency approaching 100 %. The sulfonated copolymer hydrogel has a maximum adsorption capacity of 518.49 mg/g, which is six times larger than pristine PAN. The Langmuir model properly represented the isotherm adsorption data, however the kinetics data was better described by the pseudo-second-order model. Based on the calculated thermodynamic characteristics, the process of CV dye adsorption on sulfonated copolymer hydrogel surface was spontaneous and exothermic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Saudi Chemical Society
Journal of Saudi Chemical Society CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
8.90
自引率
1.80%
发文量
120
审稿时长
38 days
期刊介绍: Journal of Saudi Chemical Society is an English language, peer-reviewed scholarly publication in the area of chemistry. Journal of Saudi Chemical Society publishes original papers, reviews and short reports on, but not limited to: •Inorganic chemistry •Physical chemistry •Organic chemistry •Analytical chemistry Journal of Saudi Chemical Society is the official publication of the Saudi Chemical Society and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.
期刊最新文献
Ultrasound probe-assisted fabrication of 2,3-disubstituted quinazoline-4(3H)-one framework in the existence of SiO2-decorated nano-scale TiO2 composite and investigating their antibacterial attributes via molecular docking simulations Enhanced antibacterial testing and latent fingerprint detection using dichlorofluorescein-doped carbon dots Development and assessment of vanadium-based metal–organic frameworks for the effective elimination of hazardous pesticides from aqueous solutions: Mechanism of uptake, adsorption capacities, rate of uptake, and enhancement via the Box-Behnken design Novel and reusable magnetic MOF nanocomposite coupled ionic liquid-promoted efficient chemical fixation of CO2 into α-alkylidene cyclic carbonates Continuous processing of JP-10 production: Hydroisomerization of endo-tetrahydrodicyclopentadiene to exo-tetrahydrodicyclopentadiene using a novel bimetal catalyst of Ba/Se supported on TiO2/SO4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1