Wanessa S. Mota , Simone S.C. Oliveira , Matheus M. Pereira , Damião P. Souza , Mayara Castro , Pollyanna S. Gomes , Herbert L.M. Guedes , Vinícius F. Souza , André L.S. Santos , Ricardo L.C. Albuquerque-Junior , Juliana C. Cardoso , Cristina Blanco-Llamero , Sona Jain , Eliana B. Souto , Patrícia Severino
{"title":"咖啡酸异戊酯是一种治疗利什曼病的有效药物:硅学和体内研究","authors":"Wanessa S. Mota , Simone S.C. Oliveira , Matheus M. Pereira , Damião P. Souza , Mayara Castro , Pollyanna S. Gomes , Herbert L.M. Guedes , Vinícius F. Souza , André L.S. Santos , Ricardo L.C. Albuquerque-Junior , Juliana C. Cardoso , Cristina Blanco-Llamero , Sona Jain , Eliana B. Souto , Patrícia Severino","doi":"10.1016/j.crbiot.2024.100209","DOIUrl":null,"url":null,"abstract":"<div><p>Leishmaniasis is recognised as the second largest parasitic disease worldwide and yet a neglected disease. The current pharmacological treatments are associated with significant challenges, including high toxicity, high cost and parasitic resistance. Considering the potential of isopentyl caffeate (ICaf) as an anti-leishmanial agent, the present work evaluated the <em>in vivo</em> toxicity of ICaf and the absorption, distribution, metabolism, and excretion (ADME) properties <em>in silico</em>, aiming at the treatment of <em>Leishmania amazonensis</em>. For the <em>in vivo</em> toxicity testing, Swiss mice (<em>Mus musculus</em>) were treated with a single dose of ICaf. During the 14-day evaluation period, the animals underwent assessments including hippocratic screening, weight measurement, as well as histological and hematological evaluations. Analysis of ADME properties of ICaf was conducted to evaluate its pharmacokinetic characteristics and bioavailability. Characteristics, such as molar refractivity through Lipinski's Rule of Five, were identified. The <em>in silico</em> results showed that ICaf is considered to have good oral bioavailability and has potential to be considered as a new drug. From the <em>in vivo</em> toxicity testing, none of the evaluated parameters revealed toxicity of ICaf to the animals when treated intraperitoneally. The <em>in vivo</em> treatment reduced the lesion and the parasite load at the tested doses, corroborating the assumption that ICaf may be a potential pharmacological alternative against <em>L. amazonensis</em>.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590262824000352/pdfft?md5=34b6b52f6490ccae56027b2ac7ff33f1&pid=1-s2.0-S2590262824000352-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Isopentyl caffeate as a promising drug for the treatment of leishmaniasis: An in silico and in vivo study\",\"authors\":\"Wanessa S. Mota , Simone S.C. Oliveira , Matheus M. Pereira , Damião P. Souza , Mayara Castro , Pollyanna S. Gomes , Herbert L.M. Guedes , Vinícius F. Souza , André L.S. Santos , Ricardo L.C. Albuquerque-Junior , Juliana C. Cardoso , Cristina Blanco-Llamero , Sona Jain , Eliana B. Souto , Patrícia Severino\",\"doi\":\"10.1016/j.crbiot.2024.100209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Leishmaniasis is recognised as the second largest parasitic disease worldwide and yet a neglected disease. The current pharmacological treatments are associated with significant challenges, including high toxicity, high cost and parasitic resistance. Considering the potential of isopentyl caffeate (ICaf) as an anti-leishmanial agent, the present work evaluated the <em>in vivo</em> toxicity of ICaf and the absorption, distribution, metabolism, and excretion (ADME) properties <em>in silico</em>, aiming at the treatment of <em>Leishmania amazonensis</em>. For the <em>in vivo</em> toxicity testing, Swiss mice (<em>Mus musculus</em>) were treated with a single dose of ICaf. During the 14-day evaluation period, the animals underwent assessments including hippocratic screening, weight measurement, as well as histological and hematological evaluations. Analysis of ADME properties of ICaf was conducted to evaluate its pharmacokinetic characteristics and bioavailability. Characteristics, such as molar refractivity through Lipinski's Rule of Five, were identified. The <em>in silico</em> results showed that ICaf is considered to have good oral bioavailability and has potential to be considered as a new drug. From the <em>in vivo</em> toxicity testing, none of the evaluated parameters revealed toxicity of ICaf to the animals when treated intraperitoneally. The <em>in vivo</em> treatment reduced the lesion and the parasite load at the tested doses, corroborating the assumption that ICaf may be a potential pharmacological alternative against <em>L. amazonensis</em>.</p></div>\",\"PeriodicalId\":52676,\"journal\":{\"name\":\"Current Research in Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590262824000352/pdfft?md5=34b6b52f6490ccae56027b2ac7ff33f1&pid=1-s2.0-S2590262824000352-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590262824000352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590262824000352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Isopentyl caffeate as a promising drug for the treatment of leishmaniasis: An in silico and in vivo study
Leishmaniasis is recognised as the second largest parasitic disease worldwide and yet a neglected disease. The current pharmacological treatments are associated with significant challenges, including high toxicity, high cost and parasitic resistance. Considering the potential of isopentyl caffeate (ICaf) as an anti-leishmanial agent, the present work evaluated the in vivo toxicity of ICaf and the absorption, distribution, metabolism, and excretion (ADME) properties in silico, aiming at the treatment of Leishmania amazonensis. For the in vivo toxicity testing, Swiss mice (Mus musculus) were treated with a single dose of ICaf. During the 14-day evaluation period, the animals underwent assessments including hippocratic screening, weight measurement, as well as histological and hematological evaluations. Analysis of ADME properties of ICaf was conducted to evaluate its pharmacokinetic characteristics and bioavailability. Characteristics, such as molar refractivity through Lipinski's Rule of Five, were identified. The in silico results showed that ICaf is considered to have good oral bioavailability and has potential to be considered as a new drug. From the in vivo toxicity testing, none of the evaluated parameters revealed toxicity of ICaf to the animals when treated intraperitoneally. The in vivo treatment reduced the lesion and the parasite load at the tested doses, corroborating the assumption that ICaf may be a potential pharmacological alternative against L. amazonensis.
期刊介绍:
Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines.
Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.