{"title":"食物链微塑料污染及其对人类健康的影响:综述","authors":"Chukwuebuka Gabriel Eze, Chidiebele Emmanuel Nwankwo, Satarupa Dey, Suresh Sundaramurthy, Emmanuel Sunday Okeke","doi":"10.1007/s10311-024-01734-2","DOIUrl":null,"url":null,"abstract":"<div><p>Microplastics have been recently detected in many environmental media and living organisms, yet their transfer and toxicity to humans are poorly known. Here, we review microplastic transfer in the food chain with focus on microplastic pollution sources, methods to analyze microplastics in food, health impact of food-related microplastic exposure, and remediation of microplastic pollution. Microplastic pollution sources include seafood, food additives, packaging materials, and agricultural and industrial products. Remediation techniques comprise the use of microbial enzymes and biofilms. Microplastic detection methods in food rely on separation and quantification by optical detection, scanning electron micrography, and Fourier-transform infrared spectroscopy. Human health impact following microplastic ingestion include cancers, organ and respiration damage, and reproductive impairments. Overall, microplastic toxicity is mainly due to their ability to enter the metabolism, adsorption into the circulatory system for translocation, and difficulty, if not impossibility, of excretion.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"1889 - 1927"},"PeriodicalIF":15.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Food chain microplastics contamination and impact on human health: a review\",\"authors\":\"Chukwuebuka Gabriel Eze, Chidiebele Emmanuel Nwankwo, Satarupa Dey, Suresh Sundaramurthy, Emmanuel Sunday Okeke\",\"doi\":\"10.1007/s10311-024-01734-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microplastics have been recently detected in many environmental media and living organisms, yet their transfer and toxicity to humans are poorly known. Here, we review microplastic transfer in the food chain with focus on microplastic pollution sources, methods to analyze microplastics in food, health impact of food-related microplastic exposure, and remediation of microplastic pollution. Microplastic pollution sources include seafood, food additives, packaging materials, and agricultural and industrial products. Remediation techniques comprise the use of microbial enzymes and biofilms. Microplastic detection methods in food rely on separation and quantification by optical detection, scanning electron micrography, and Fourier-transform infrared spectroscopy. Human health impact following microplastic ingestion include cancers, organ and respiration damage, and reproductive impairments. Overall, microplastic toxicity is mainly due to their ability to enter the metabolism, adsorption into the circulatory system for translocation, and difficulty, if not impossibility, of excretion.</p></div>\",\"PeriodicalId\":541,\"journal\":{\"name\":\"Environmental Chemistry Letters\",\"volume\":\"22 4\",\"pages\":\"1889 - 1927\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Chemistry Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10311-024-01734-2\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-024-01734-2","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Food chain microplastics contamination and impact on human health: a review
Microplastics have been recently detected in many environmental media and living organisms, yet their transfer and toxicity to humans are poorly known. Here, we review microplastic transfer in the food chain with focus on microplastic pollution sources, methods to analyze microplastics in food, health impact of food-related microplastic exposure, and remediation of microplastic pollution. Microplastic pollution sources include seafood, food additives, packaging materials, and agricultural and industrial products. Remediation techniques comprise the use of microbial enzymes and biofilms. Microplastic detection methods in food rely on separation and quantification by optical detection, scanning electron micrography, and Fourier-transform infrared spectroscopy. Human health impact following microplastic ingestion include cancers, organ and respiration damage, and reproductive impairments. Overall, microplastic toxicity is mainly due to their ability to enter the metabolism, adsorption into the circulatory system for translocation, and difficulty, if not impossibility, of excretion.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.