Diksha Koul , Devtulya Chander , Ravi S. Manhas , Md. Mehedi Hossain , Mohd Jamal Dar , Asha Chaubey
{"title":"从 Serratia marcescens MES-4 (一种从桑树中分离出来的内生菌)中提纯血清肽酶、确定其功能特性并提高其产量","authors":"Diksha Koul , Devtulya Chander , Ravi S. Manhas , Md. Mehedi Hossain , Mohd Jamal Dar , Asha Chaubey","doi":"10.1016/j.jbiotec.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>Serratiopeptidase, a proteolytic enzyme serves as an important anti-inflammatory and analgesic medication. Present study reports the production and purification of extracellular serratiopeptidase from an endophyte, <em>Serratia marcescens</em> MES-4, isolated from <em>Morus rubra</em>. Purification of the enzyme by Ion exchange chromatography led to the specific activity of 13,030 U/mg protein of serratiopeptidase, showcasing about 3.1 fold enhanced activity. The catalytic domain of the purified serratiopeptidase, composed of Zn coordinated with three histidine residues (His 209, His 213, and His 219), along with glutamate (Glu 210) and tyrosine (Tyr 249). The molecular mass, as determined by SDS-PAGE was ∼51 kDa. The purified serratiopeptidase displayed optimal activity at pH 9.0, temperature 50°C. Kinetic studies revealed V<sub>max</sub> and K<sub>m</sub> values of 33,333 U/mL and 1.66 mg/mL, respectively. Further, optimized conditions for the production of serratiopeptidase by Taguchi design led to the productivity of 87 U/mL/h with 87.9 fold enhanced production as compared to the previous conditions.</p></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Purification, functional characterization and enhanced production of serratiopeptidase from Serratia marcescens MES-4: An endophyte isolated from Morus rubra\",\"authors\":\"Diksha Koul , Devtulya Chander , Ravi S. Manhas , Md. Mehedi Hossain , Mohd Jamal Dar , Asha Chaubey\",\"doi\":\"10.1016/j.jbiotec.2024.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Serratiopeptidase, a proteolytic enzyme serves as an important anti-inflammatory and analgesic medication. Present study reports the production and purification of extracellular serratiopeptidase from an endophyte, <em>Serratia marcescens</em> MES-4, isolated from <em>Morus rubra</em>. Purification of the enzyme by Ion exchange chromatography led to the specific activity of 13,030 U/mg protein of serratiopeptidase, showcasing about 3.1 fold enhanced activity. The catalytic domain of the purified serratiopeptidase, composed of Zn coordinated with three histidine residues (His 209, His 213, and His 219), along with glutamate (Glu 210) and tyrosine (Tyr 249). The molecular mass, as determined by SDS-PAGE was ∼51 kDa. The purified serratiopeptidase displayed optimal activity at pH 9.0, temperature 50°C. Kinetic studies revealed V<sub>max</sub> and K<sub>m</sub> values of 33,333 U/mL and 1.66 mg/mL, respectively. Further, optimized conditions for the production of serratiopeptidase by Taguchi design led to the productivity of 87 U/mL/h with 87.9 fold enhanced production as compared to the previous conditions.</p></div>\",\"PeriodicalId\":15153,\"journal\":{\"name\":\"Journal of biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168165624000932\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165624000932","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Purification, functional characterization and enhanced production of serratiopeptidase from Serratia marcescens MES-4: An endophyte isolated from Morus rubra
Serratiopeptidase, a proteolytic enzyme serves as an important anti-inflammatory and analgesic medication. Present study reports the production and purification of extracellular serratiopeptidase from an endophyte, Serratia marcescens MES-4, isolated from Morus rubra. Purification of the enzyme by Ion exchange chromatography led to the specific activity of 13,030 U/mg protein of serratiopeptidase, showcasing about 3.1 fold enhanced activity. The catalytic domain of the purified serratiopeptidase, composed of Zn coordinated with three histidine residues (His 209, His 213, and His 219), along with glutamate (Glu 210) and tyrosine (Tyr 249). The molecular mass, as determined by SDS-PAGE was ∼51 kDa. The purified serratiopeptidase displayed optimal activity at pH 9.0, temperature 50°C. Kinetic studies revealed Vmax and Km values of 33,333 U/mL and 1.66 mg/mL, respectively. Further, optimized conditions for the production of serratiopeptidase by Taguchi design led to the productivity of 87 U/mL/h with 87.9 fold enhanced production as compared to the previous conditions.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.