Sahil Sahil, Rickwinder Singh, Shyam K. Masakapalli, Nidhi Pareek, Andrey A. Kovalev, Yuriy V. Litti, Sonil Nanda, Vivekanand Vivekanand
{"title":"生物质预处理、生物加工和生物制氢反应器设计:综述","authors":"Sahil Sahil, Rickwinder Singh, Shyam K. Masakapalli, Nidhi Pareek, Andrey A. Kovalev, Yuriy V. Litti, Sonil Nanda, Vivekanand Vivekanand","doi":"10.1007/s10311-024-01722-6","DOIUrl":null,"url":null,"abstract":"<div><p>The negative effects of the accelerating climate change due partly to fossil fuel consumption is calling for the rapid development of sustainable energies such as biohydrogen, which is produced using microorganisms. Here we review biohydrogen production from biomass, with focus on biomass pretreatment, fermentative production, factors affecting production, bioreactors, kinetics and modeling, and improved production with nanoparticles. Pretreatments include chemical, physical and biological methods. Hydrogen production is done by photo-fermentation or dark fermentation. Influencing factors comprise pH, temperature, hydraulic retention time, and the presence of fermentation inhibitors. Continuous stirred tank-, anaerobic fluidized bed-, anaerobic sequencing batch-, up-flow anaerobic sludge blanket- and dynamic membrane reactors are used. Additives include cobalt, nickel and iron nanoparticles. Compared to thermochemical, photochemical and electrochemical processes, biohydrogen production needs more time but is easy to operate, cost-effective and environmentally friendly.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"1665 - 1702"},"PeriodicalIF":15.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomass pretreatment, bioprocessing and reactor design for biohydrogen production: a review\",\"authors\":\"Sahil Sahil, Rickwinder Singh, Shyam K. Masakapalli, Nidhi Pareek, Andrey A. Kovalev, Yuriy V. Litti, Sonil Nanda, Vivekanand Vivekanand\",\"doi\":\"10.1007/s10311-024-01722-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The negative effects of the accelerating climate change due partly to fossil fuel consumption is calling for the rapid development of sustainable energies such as biohydrogen, which is produced using microorganisms. Here we review biohydrogen production from biomass, with focus on biomass pretreatment, fermentative production, factors affecting production, bioreactors, kinetics and modeling, and improved production with nanoparticles. Pretreatments include chemical, physical and biological methods. Hydrogen production is done by photo-fermentation or dark fermentation. Influencing factors comprise pH, temperature, hydraulic retention time, and the presence of fermentation inhibitors. Continuous stirred tank-, anaerobic fluidized bed-, anaerobic sequencing batch-, up-flow anaerobic sludge blanket- and dynamic membrane reactors are used. Additives include cobalt, nickel and iron nanoparticles. Compared to thermochemical, photochemical and electrochemical processes, biohydrogen production needs more time but is easy to operate, cost-effective and environmentally friendly.</p></div>\",\"PeriodicalId\":541,\"journal\":{\"name\":\"Environmental Chemistry Letters\",\"volume\":\"22 4\",\"pages\":\"1665 - 1702\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Chemistry Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10311-024-01722-6\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-024-01722-6","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Biomass pretreatment, bioprocessing and reactor design for biohydrogen production: a review
The negative effects of the accelerating climate change due partly to fossil fuel consumption is calling for the rapid development of sustainable energies such as biohydrogen, which is produced using microorganisms. Here we review biohydrogen production from biomass, with focus on biomass pretreatment, fermentative production, factors affecting production, bioreactors, kinetics and modeling, and improved production with nanoparticles. Pretreatments include chemical, physical and biological methods. Hydrogen production is done by photo-fermentation or dark fermentation. Influencing factors comprise pH, temperature, hydraulic retention time, and the presence of fermentation inhibitors. Continuous stirred tank-, anaerobic fluidized bed-, anaerobic sequencing batch-, up-flow anaerobic sludge blanket- and dynamic membrane reactors are used. Additives include cobalt, nickel and iron nanoparticles. Compared to thermochemical, photochemical and electrochemical processes, biohydrogen production needs more time but is easy to operate, cost-effective and environmentally friendly.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.