{"title":"双光子视觉 - 用红外线观察颜色","authors":"Katarzyna Komar","doi":"10.1016/j.visres.2024.108404","DOIUrl":null,"url":null,"abstract":"<div><p>This review discusses the current state of knowledge regarding the phenomenon called two-photon vision. It involves the visual perception of pulsed infrared beams in the range of 850–1200 nm as having colors corresponding to one-half of the IR wavelengths. It is caused by two-photon absorption (TPA), which occurs when the visual photopigment interacts simultaneously with two infrared photons.</p><p>The physical mechanism of TPA is described, and implications about the efficiency of the process are considered. The spectral range of two-photon vision is defined, along with a detailed discussion of the known differences in color perception between normal and two-photon vision. The quadratic dependence of the luminance of two-photon stimuli on the power of the stimulating beam is also explained. Examples of recording two-photon vision in the retinas of mice and monkeys are provided from the literature. Finally, applications of two-photon vision are discussed, particularly two-photon microperimetry, which has been under development for several years; and the potential advantages of two-photon retinal displays are explained.</p></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":"220 ","pages":"Article 108404"},"PeriodicalIF":1.5000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0042698924000488/pdfft?md5=71bd85ed9386356a140bd2016bf7aa73&pid=1-s2.0-S0042698924000488-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Two-photon vision – Seeing colors in infrared\",\"authors\":\"Katarzyna Komar\",\"doi\":\"10.1016/j.visres.2024.108404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review discusses the current state of knowledge regarding the phenomenon called two-photon vision. It involves the visual perception of pulsed infrared beams in the range of 850–1200 nm as having colors corresponding to one-half of the IR wavelengths. It is caused by two-photon absorption (TPA), which occurs when the visual photopigment interacts simultaneously with two infrared photons.</p><p>The physical mechanism of TPA is described, and implications about the efficiency of the process are considered. The spectral range of two-photon vision is defined, along with a detailed discussion of the known differences in color perception between normal and two-photon vision. The quadratic dependence of the luminance of two-photon stimuli on the power of the stimulating beam is also explained. Examples of recording two-photon vision in the retinas of mice and monkeys are provided from the literature. Finally, applications of two-photon vision are discussed, particularly two-photon microperimetry, which has been under development for several years; and the potential advantages of two-photon retinal displays are explained.</p></div>\",\"PeriodicalId\":23670,\"journal\":{\"name\":\"Vision Research\",\"volume\":\"220 \",\"pages\":\"Article 108404\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0042698924000488/pdfft?md5=71bd85ed9386356a140bd2016bf7aa73&pid=1-s2.0-S0042698924000488-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vision Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042698924000488\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042698924000488","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
This review discusses the current state of knowledge regarding the phenomenon called two-photon vision. It involves the visual perception of pulsed infrared beams in the range of 850–1200 nm as having colors corresponding to one-half of the IR wavelengths. It is caused by two-photon absorption (TPA), which occurs when the visual photopigment interacts simultaneously with two infrared photons.
The physical mechanism of TPA is described, and implications about the efficiency of the process are considered. The spectral range of two-photon vision is defined, along with a detailed discussion of the known differences in color perception between normal and two-photon vision. The quadratic dependence of the luminance of two-photon stimuli on the power of the stimulating beam is also explained. Examples of recording two-photon vision in the retinas of mice and monkeys are provided from the literature. Finally, applications of two-photon vision are discussed, particularly two-photon microperimetry, which has been under development for several years; and the potential advantages of two-photon retinal displays are explained.
期刊介绍:
Vision Research is a journal devoted to the functional aspects of human, vertebrate and invertebrate vision and publishes experimental and observational studies, reviews, and theoretical and computational analyses. Vision Research also publishes clinical studies relevant to normal visual function and basic research relevant to visual dysfunction or its clinical investigation. Functional aspects of vision is interpreted broadly, ranging from molecular and cellular function to perception and behavior. Detailed descriptions are encouraged but enough introductory background should be included for non-specialists. Theoretical and computational papers should give a sense of order to the facts or point to new verifiable observations. Papers dealing with questions in the history of vision science should stress the development of ideas in the field.