Khoirom Johnson Singh, Lomash Chandra Acharya, Anand Bulusu, Sudeb Dasgupta
{"title":"揭示基于 Hf0.5Zr0.5O2 的铁电栅极堆栈的负电容效应背后的机理,并引入漏电感知 NCFET 的电路兼容混合紧凑模型","authors":"Khoirom Johnson Singh, Lomash Chandra Acharya, Anand Bulusu, Sudeb Dasgupta","doi":"10.1016/j.sse.2024.108932","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses the lack of understanding of the origin of negative capacitance (NC) effect in the hafnium zirconium oxide (HZO) ferroelectric (FE) gate stack and proposes a new circuit-compatible hybrid compact model for NC field-effect transistors (NCFETs). The model supports Landau and Preisach FE models, encompassing multiple FE domains, FE leakage, and FE damping. The proposed model is experimentally validated, and the intrinsic switching speed of HZO is predicted. It is revealed that the NC effect in HZO stems from a mismatch in free charge and polarization switching rates. Performance evaluation of the model reveals that HZO-NCFET achieves ∼1.18x and ∼9.17x higher amplification at low and high frequencies compared to its PZT-NCFET counterpart. Our study demonstrates the superior ON-current (2.74 mA/µm) of the Engineered Leaky-HZO NCFET, surpassing FinFET and Germanium-source L-shaped TFET by ∼7.89x and ∼4.81x, respectively. This study briefly examines the direct causes of the negative drain-induced barrier lowering effect and negative differential resistance effect in Landau NCFETs. Furthermore, we emphasize the crucial role of FE thickness in determining the magnitude of the NC effect, offering valuable insights for the design and optimization of NC-based devices and circuits. Analysis of the Miller effect in NCFET-based inverters demonstrates significant improvements owing to high ON-current and voltage amplification, making them suitable for high-speed NCFET-based circuitry. Landau and Preisach NCFET-based inverters exhibit (50.70%, 51.34%) lower overshoots and (28.45%, 28.61%) reduced propagation delay compared to the NC nanowire FET-based inverter. Moreover, NCFET-based 2:1 fork circuits significantly reduce (46.69%, 51.37%) critical clock skew compared to CMOS FET-based circuits, showcasing the potential of NCFET technology in addressing timing violations in random logic paths. Furthermore, the Landau and Preisach NCFET-based ring oscillators (ROs) achieve (39.97%, 49.38%) and (52.65%, 62.92%) higher oscillation frequencies (f<sub>OSC</sub>) compared to state-of-the-art graphene FET-RO and CMOS-RO, respectively. The 15-stage Leaky-HZO and Engineered Leaky-HZO NCFET-ROs outperform the double gate-FET-RO by ∼2.19x and ∼16.69x in terms of f<sub>OSC</sub>, highlighting their superior performance in frequency-domain metrics. These findings demonstrate the potential of NCFET-based digital and mixed-signal circuits for high-performance integrated circuit designs.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"216 ","pages":"Article 108932"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the mechanism behind the negative capacitance effect in Hf0.5Zr0.5O2-Based ferroelectric gate stacks and introducing a Circuit-Compatible hybrid compact model for Leakage-Aware NCFETs\",\"authors\":\"Khoirom Johnson Singh, Lomash Chandra Acharya, Anand Bulusu, Sudeb Dasgupta\",\"doi\":\"10.1016/j.sse.2024.108932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper addresses the lack of understanding of the origin of negative capacitance (NC) effect in the hafnium zirconium oxide (HZO) ferroelectric (FE) gate stack and proposes a new circuit-compatible hybrid compact model for NC field-effect transistors (NCFETs). The model supports Landau and Preisach FE models, encompassing multiple FE domains, FE leakage, and FE damping. The proposed model is experimentally validated, and the intrinsic switching speed of HZO is predicted. It is revealed that the NC effect in HZO stems from a mismatch in free charge and polarization switching rates. Performance evaluation of the model reveals that HZO-NCFET achieves ∼1.18x and ∼9.17x higher amplification at low and high frequencies compared to its PZT-NCFET counterpart. Our study demonstrates the superior ON-current (2.74 mA/µm) of the Engineered Leaky-HZO NCFET, surpassing FinFET and Germanium-source L-shaped TFET by ∼7.89x and ∼4.81x, respectively. This study briefly examines the direct causes of the negative drain-induced barrier lowering effect and negative differential resistance effect in Landau NCFETs. Furthermore, we emphasize the crucial role of FE thickness in determining the magnitude of the NC effect, offering valuable insights for the design and optimization of NC-based devices and circuits. Analysis of the Miller effect in NCFET-based inverters demonstrates significant improvements owing to high ON-current and voltage amplification, making them suitable for high-speed NCFET-based circuitry. Landau and Preisach NCFET-based inverters exhibit (50.70%, 51.34%) lower overshoots and (28.45%, 28.61%) reduced propagation delay compared to the NC nanowire FET-based inverter. Moreover, NCFET-based 2:1 fork circuits significantly reduce (46.69%, 51.37%) critical clock skew compared to CMOS FET-based circuits, showcasing the potential of NCFET technology in addressing timing violations in random logic paths. Furthermore, the Landau and Preisach NCFET-based ring oscillators (ROs) achieve (39.97%, 49.38%) and (52.65%, 62.92%) higher oscillation frequencies (f<sub>OSC</sub>) compared to state-of-the-art graphene FET-RO and CMOS-RO, respectively. The 15-stage Leaky-HZO and Engineered Leaky-HZO NCFET-ROs outperform the double gate-FET-RO by ∼2.19x and ∼16.69x in terms of f<sub>OSC</sub>, highlighting their superior performance in frequency-domain metrics. These findings demonstrate the potential of NCFET-based digital and mixed-signal circuits for high-performance integrated circuit designs.</p></div>\",\"PeriodicalId\":21909,\"journal\":{\"name\":\"Solid-state Electronics\",\"volume\":\"216 \",\"pages\":\"Article 108932\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid-state Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038110124000819\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124000819","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Unveiling the mechanism behind the negative capacitance effect in Hf0.5Zr0.5O2-Based ferroelectric gate stacks and introducing a Circuit-Compatible hybrid compact model for Leakage-Aware NCFETs
This paper addresses the lack of understanding of the origin of negative capacitance (NC) effect in the hafnium zirconium oxide (HZO) ferroelectric (FE) gate stack and proposes a new circuit-compatible hybrid compact model for NC field-effect transistors (NCFETs). The model supports Landau and Preisach FE models, encompassing multiple FE domains, FE leakage, and FE damping. The proposed model is experimentally validated, and the intrinsic switching speed of HZO is predicted. It is revealed that the NC effect in HZO stems from a mismatch in free charge and polarization switching rates. Performance evaluation of the model reveals that HZO-NCFET achieves ∼1.18x and ∼9.17x higher amplification at low and high frequencies compared to its PZT-NCFET counterpart. Our study demonstrates the superior ON-current (2.74 mA/µm) of the Engineered Leaky-HZO NCFET, surpassing FinFET and Germanium-source L-shaped TFET by ∼7.89x and ∼4.81x, respectively. This study briefly examines the direct causes of the negative drain-induced barrier lowering effect and negative differential resistance effect in Landau NCFETs. Furthermore, we emphasize the crucial role of FE thickness in determining the magnitude of the NC effect, offering valuable insights for the design and optimization of NC-based devices and circuits. Analysis of the Miller effect in NCFET-based inverters demonstrates significant improvements owing to high ON-current and voltage amplification, making them suitable for high-speed NCFET-based circuitry. Landau and Preisach NCFET-based inverters exhibit (50.70%, 51.34%) lower overshoots and (28.45%, 28.61%) reduced propagation delay compared to the NC nanowire FET-based inverter. Moreover, NCFET-based 2:1 fork circuits significantly reduce (46.69%, 51.37%) critical clock skew compared to CMOS FET-based circuits, showcasing the potential of NCFET technology in addressing timing violations in random logic paths. Furthermore, the Landau and Preisach NCFET-based ring oscillators (ROs) achieve (39.97%, 49.38%) and (52.65%, 62.92%) higher oscillation frequencies (fOSC) compared to state-of-the-art graphene FET-RO and CMOS-RO, respectively. The 15-stage Leaky-HZO and Engineered Leaky-HZO NCFET-ROs outperform the double gate-FET-RO by ∼2.19x and ∼16.69x in terms of fOSC, highlighting their superior performance in frequency-domain metrics. These findings demonstrate the potential of NCFET-based digital and mixed-signal circuits for high-performance integrated circuit designs.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.