Isaac W. Park, Tadeo Ramirez‐Parada, Sydne Record, Charles Davis, Aaron M. Ellison, Susan J. Mazer
{"title":"标本馆数据可准确预测种群开花的时间和持续时间","authors":"Isaac W. Park, Tadeo Ramirez‐Parada, Sydne Record, Charles Davis, Aaron M. Ellison, Susan J. Mazer","doi":"10.1111/ecog.06961","DOIUrl":null,"url":null,"abstract":"Forecasting the impacts of changing climate on the phenology of plant populations is essential for anticipating and managing potential ecological disruptions to biotic communities. Herbarium specimens enable assessments of plant phenology across broad spatiotemporal scales. However, specimens are collected opportunistically, and it is unclear whether their collection dates – used as proxies of phenological stages – are closest to the onset, peak, or termination of a phenophase, or whether sampled individuals represent early, average, or late occurrences in their populations. Despite this, no studies have assessed whether these uncertainties limit the utility of herbarium specimens for estimating the onset and termination of a phenophase. Using simulated data mimicking such uncertainties, we evaluated the accuracy with which the onset and termination of population‐level phenological displays (in this case, of flowering) can be predicted from natural‐history collections data (controlling for biases in collector behavior), and how the duration, variability, and responsiveness to climate of the flowering period of a species and temporal collection biases influence model accuracy. Estimates of population‐level onset and termination were highly accurate for a wide range of simulated species' attributes, but accuracy declined among species with longer individual‐level flowering duration and when there were temporal biases in sample collection, as is common among the earliest and latest‐flowering species. The amount of data required to model population‐level phenological displays is not impractical to obtain; model accuracy declined by less than 1 day as sample sizes rose from 300 to 1000 specimens. Our analyses of simulated data indicate that, absent pervasive biases in collection and if the climate conditions that affect phenological timing are correctly identified, specimen data can predict the onset, termination, and duration of a population's flowering period with similar accuracy to estimates of median flowering time that are commonplace in the literature.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"248 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Herbarium data accurately predict the timing and duration of population‐level flowering displays\",\"authors\":\"Isaac W. Park, Tadeo Ramirez‐Parada, Sydne Record, Charles Davis, Aaron M. Ellison, Susan J. Mazer\",\"doi\":\"10.1111/ecog.06961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forecasting the impacts of changing climate on the phenology of plant populations is essential for anticipating and managing potential ecological disruptions to biotic communities. Herbarium specimens enable assessments of plant phenology across broad spatiotemporal scales. However, specimens are collected opportunistically, and it is unclear whether their collection dates – used as proxies of phenological stages – are closest to the onset, peak, or termination of a phenophase, or whether sampled individuals represent early, average, or late occurrences in their populations. Despite this, no studies have assessed whether these uncertainties limit the utility of herbarium specimens for estimating the onset and termination of a phenophase. Using simulated data mimicking such uncertainties, we evaluated the accuracy with which the onset and termination of population‐level phenological displays (in this case, of flowering) can be predicted from natural‐history collections data (controlling for biases in collector behavior), and how the duration, variability, and responsiveness to climate of the flowering period of a species and temporal collection biases influence model accuracy. Estimates of population‐level onset and termination were highly accurate for a wide range of simulated species' attributes, but accuracy declined among species with longer individual‐level flowering duration and when there were temporal biases in sample collection, as is common among the earliest and latest‐flowering species. The amount of data required to model population‐level phenological displays is not impractical to obtain; model accuracy declined by less than 1 day as sample sizes rose from 300 to 1000 specimens. Our analyses of simulated data indicate that, absent pervasive biases in collection and if the climate conditions that affect phenological timing are correctly identified, specimen data can predict the onset, termination, and duration of a population's flowering period with similar accuracy to estimates of median flowering time that are commonplace in the literature.\",\"PeriodicalId\":51026,\"journal\":{\"name\":\"Ecography\",\"volume\":\"248 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/ecog.06961\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/ecog.06961","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Herbarium data accurately predict the timing and duration of population‐level flowering displays
Forecasting the impacts of changing climate on the phenology of plant populations is essential for anticipating and managing potential ecological disruptions to biotic communities. Herbarium specimens enable assessments of plant phenology across broad spatiotemporal scales. However, specimens are collected opportunistically, and it is unclear whether their collection dates – used as proxies of phenological stages – are closest to the onset, peak, or termination of a phenophase, or whether sampled individuals represent early, average, or late occurrences in their populations. Despite this, no studies have assessed whether these uncertainties limit the utility of herbarium specimens for estimating the onset and termination of a phenophase. Using simulated data mimicking such uncertainties, we evaluated the accuracy with which the onset and termination of population‐level phenological displays (in this case, of flowering) can be predicted from natural‐history collections data (controlling for biases in collector behavior), and how the duration, variability, and responsiveness to climate of the flowering period of a species and temporal collection biases influence model accuracy. Estimates of population‐level onset and termination were highly accurate for a wide range of simulated species' attributes, but accuracy declined among species with longer individual‐level flowering duration and when there were temporal biases in sample collection, as is common among the earliest and latest‐flowering species. The amount of data required to model population‐level phenological displays is not impractical to obtain; model accuracy declined by less than 1 day as sample sizes rose from 300 to 1000 specimens. Our analyses of simulated data indicate that, absent pervasive biases in collection and if the climate conditions that affect phenological timing are correctly identified, specimen data can predict the onset, termination, and duration of a population's flowering period with similar accuracy to estimates of median flowering time that are commonplace in the literature.
期刊介绍:
ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem.
Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography.
Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.