Differential predation patterns of free-ranging cats among continents

IF 5.4 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Ecography Pub Date : 2024-11-20 DOI:10.1111/ecog.07169
Martin Philippe-Lesaffre, Corey J. A. Bradshaw, Irene Castañeda, John Llewelyn, Christopher R. Dickman, Christopher A. Lepczyk, Jean Fantle-Lepczyk, Clara Marino, Franck Courchamp, Elsa Bonnaud
{"title":"Differential predation patterns of free-ranging cats among continents","authors":"Martin Philippe-Lesaffre, Corey J. A. Bradshaw, Irene Castañeda, John Llewelyn, Christopher R. Dickman, Christopher A. Lepczyk, Jean Fantle-Lepczyk, Clara Marino, Franck Courchamp, Elsa Bonnaud","doi":"10.1111/ecog.07169","DOIUrl":null,"url":null,"abstract":"Co-evolutionary relationships associated with biogeographical context mediate the response of native prey to introduced predators, but this effect has not yet been demonstrated for domestic cats. We investigated the main factors influencing the vulnerability of prey species to domestic cat <i>Felis catus</i> predation across Australia, Europe and North America, where domestic cats are introduced. In addition to prey data from empirical records, we used machine-learning models to compensate for unobserved prey in the diet of cats. We found continent-specific patterns of predation: birds were more frequently depredated by cats in Europe and North America, while mammals were favoured in Australia. Bird prey traits were consistent across continents, but those of mammalian prey diverged, notably in Australia. Differences between prey and non-prey species included mass, distribution, and reproductive traits, except in Australian mammals where there was no evidence for a relationship between mass and the probability of being prey. Many Australian mammal prey also have a high extinction risk, emphasizing their vulnerability compared to European and North American counterparts. Our findings highlight the role of eco-evolutionary context in assessing predation impacts and also demonstrate the potential for machine learning to identify at-risk species, thereby aiding global conservation efforts to reduce the negative impacts of introduced predators.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"26 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/ecog.07169","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Co-evolutionary relationships associated with biogeographical context mediate the response of native prey to introduced predators, but this effect has not yet been demonstrated for domestic cats. We investigated the main factors influencing the vulnerability of prey species to domestic cat Felis catus predation across Australia, Europe and North America, where domestic cats are introduced. In addition to prey data from empirical records, we used machine-learning models to compensate for unobserved prey in the diet of cats. We found continent-specific patterns of predation: birds were more frequently depredated by cats in Europe and North America, while mammals were favoured in Australia. Bird prey traits were consistent across continents, but those of mammalian prey diverged, notably in Australia. Differences between prey and non-prey species included mass, distribution, and reproductive traits, except in Australian mammals where there was no evidence for a relationship between mass and the probability of being prey. Many Australian mammal prey also have a high extinction risk, emphasizing their vulnerability compared to European and North American counterparts. Our findings highlight the role of eco-evolutionary context in assessing predation impacts and also demonstrate the potential for machine learning to identify at-risk species, thereby aiding global conservation efforts to reduce the negative impacts of introduced predators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
各大洲散养猫科动物捕食模式的差异
与生物地理环境相关的共同进化关系会介导本地猎物对引入的捕食者的反应,但这种影响尚未在家猫身上得到证实。我们研究了影响澳大利亚、欧洲和北美猎物易受家猫捕食的主要因素。除了来自经验记录的猎物数据外,我们还使用机器学习模型来补偿猫食谱中未观察到的猎物。我们发现了各大洲特有的捕食模式:猫在欧洲和北美更频繁地捕食鸟类,而在澳大利亚则更喜欢捕食哺乳动物。鸟类猎物的特征在各大洲是一致的,但哺乳动物猎物的特征则各不相同,尤其是在澳大利亚。猎物与非猎物物种之间的差异包括质量、分布和繁殖特征,但澳大利亚哺乳动物除外,没有证据表明质量与成为猎物的概率之间存在关系。澳大利亚的许多哺乳动物猎物也有很高的灭绝风险,与欧洲和北美的猎物相比,它们的脆弱性更为突出。我们的研究结果凸显了生态进化背景在评估捕食影响中的作用,同时也证明了机器学习识别高危物种的潜力,从而有助于全球保护工作,减少引入的捕食者的负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecography
Ecography 环境科学-生态学
CiteScore
11.60
自引率
3.40%
发文量
122
审稿时长
8-16 weeks
期刊介绍: ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem. Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography. Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.
期刊最新文献
Colonization and extinction lags drive non-linear responses to warming in mountain plant communities across the Northern Hemisphere Differential predation patterns of free-ranging cats among continents Competitive interactions modify the direct effects of climate Achieving higher standards in species distribution modeling by leveraging the diversity of available software Seasonal macro-demography of North American bird populations revealed through participatory science
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1