{"title":"仿生纳米纤维如何推动皮肤伤口管理领域的发展:最新技术与未来展望","authors":"Niloofar Eslahi , Foad Soleimani , Roya Lotfi , Fatemeh Mohandes , Abdolreza Simchi , Mehdi Razavi","doi":"10.1016/j.pmatsci.2024.101293","DOIUrl":null,"url":null,"abstract":"<div><p>Skin acts as a protective barrier for the underlying organs against external events such as irradiation of ultraviolet rays, incursion of harmful pathogens, and water evaporation. As the skin is constantly liable to damage, the wound-healing process is vital to the survival of all organisms. Materials design and development for enhanced wound healing and skin tissue regeneration have been found highly valuable in recent years. A wide range of materials and structures, including dressings and tissue-engineered substitutes composed of synthetic and/or natural biopolymers and their composites have been developed and examined. Although some have clinically been proven and are available in the market, mimicking the architecture of native extracellular matrix is still an open challenge with fundamental limitations in reproducing skin appendages, sufficient vascularization, adherence to the wound bed, and scarless wound management. Biomimetic nanofibers with tunable morphological, biological, and physicochemical features are promising candidates to overcome these drawbacks. Combined with advanced biomanufacturing and cell culturing techniques, enabling the incorporation of growth factors and stem cells within morphologically-controlled nanostructures, the fibrous structures allow the regeneration of functional skin. This paper overviews the advances in state-of-the-art strategies for designing biomimetic nanofibrous materials with a high potential for wound healing and skin regeneration. An emphasis is given to multifunctional nanocomposites with mechanobiological properties matching those of natural skin. Opportunities, challenges, and commercial status of these materials for skin repair are outlined, and their future perspective is demonstrated. The advances in smart wound management are also discussed, particularly by highlighting the potential of stimuli-responsive materials and integrated sensors in the progress of next-generation dressings for simultaneous monitoring and on-demand treatment of wounds.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"145 ","pages":"Article 101293"},"PeriodicalIF":33.6000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How biomimetic nanofibers advance the realm of cutaneous wound management: The state-of-the-art and future prospects\",\"authors\":\"Niloofar Eslahi , Foad Soleimani , Roya Lotfi , Fatemeh Mohandes , Abdolreza Simchi , Mehdi Razavi\",\"doi\":\"10.1016/j.pmatsci.2024.101293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Skin acts as a protective barrier for the underlying organs against external events such as irradiation of ultraviolet rays, incursion of harmful pathogens, and water evaporation. As the skin is constantly liable to damage, the wound-healing process is vital to the survival of all organisms. Materials design and development for enhanced wound healing and skin tissue regeneration have been found highly valuable in recent years. A wide range of materials and structures, including dressings and tissue-engineered substitutes composed of synthetic and/or natural biopolymers and their composites have been developed and examined. Although some have clinically been proven and are available in the market, mimicking the architecture of native extracellular matrix is still an open challenge with fundamental limitations in reproducing skin appendages, sufficient vascularization, adherence to the wound bed, and scarless wound management. Biomimetic nanofibers with tunable morphological, biological, and physicochemical features are promising candidates to overcome these drawbacks. Combined with advanced biomanufacturing and cell culturing techniques, enabling the incorporation of growth factors and stem cells within morphologically-controlled nanostructures, the fibrous structures allow the regeneration of functional skin. This paper overviews the advances in state-of-the-art strategies for designing biomimetic nanofibrous materials with a high potential for wound healing and skin regeneration. An emphasis is given to multifunctional nanocomposites with mechanobiological properties matching those of natural skin. Opportunities, challenges, and commercial status of these materials for skin repair are outlined, and their future perspective is demonstrated. The advances in smart wound management are also discussed, particularly by highlighting the potential of stimuli-responsive materials and integrated sensors in the progress of next-generation dressings for simultaneous monitoring and on-demand treatment of wounds.</p></div>\",\"PeriodicalId\":411,\"journal\":{\"name\":\"Progress in Materials Science\",\"volume\":\"145 \",\"pages\":\"Article 101293\"},\"PeriodicalIF\":33.6000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079642524000628\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642524000628","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
How biomimetic nanofibers advance the realm of cutaneous wound management: The state-of-the-art and future prospects
Skin acts as a protective barrier for the underlying organs against external events such as irradiation of ultraviolet rays, incursion of harmful pathogens, and water evaporation. As the skin is constantly liable to damage, the wound-healing process is vital to the survival of all organisms. Materials design and development for enhanced wound healing and skin tissue regeneration have been found highly valuable in recent years. A wide range of materials and structures, including dressings and tissue-engineered substitutes composed of synthetic and/or natural biopolymers and their composites have been developed and examined. Although some have clinically been proven and are available in the market, mimicking the architecture of native extracellular matrix is still an open challenge with fundamental limitations in reproducing skin appendages, sufficient vascularization, adherence to the wound bed, and scarless wound management. Biomimetic nanofibers with tunable morphological, biological, and physicochemical features are promising candidates to overcome these drawbacks. Combined with advanced biomanufacturing and cell culturing techniques, enabling the incorporation of growth factors and stem cells within morphologically-controlled nanostructures, the fibrous structures allow the regeneration of functional skin. This paper overviews the advances in state-of-the-art strategies for designing biomimetic nanofibrous materials with a high potential for wound healing and skin regeneration. An emphasis is given to multifunctional nanocomposites with mechanobiological properties matching those of natural skin. Opportunities, challenges, and commercial status of these materials for skin repair are outlined, and their future perspective is demonstrated. The advances in smart wound management are also discussed, particularly by highlighting the potential of stimuli-responsive materials and integrated sensors in the progress of next-generation dressings for simultaneous monitoring and on-demand treatment of wounds.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.