{"title":"室温循环老化如何影响锂离子电池在极端压痕下的行为?","authors":"Yunlong Qu, Bobin Xing, Yong Xia, Qing Zhou","doi":"10.1016/j.etran.2024.100331","DOIUrl":null,"url":null,"abstract":"<div><p>Safety of lithium-ion battery (LIB) cells throughout the whole lifecycle has drawn enormous research interest. Understanding how cycling ageing affects the mechanical-electrical-thermal responses of LIB cells under mechanical abuse is meaningful for more considerate safety design. In the present study, impact of room temperature ageing on morphology of lithium-ion pouch cell was experimentally explored at first, which clearly identified the deposition phenomenon on electrodes induced by electrolyte consumption. Spherical indentation along out-of-plane direction was carried out on both pristine and aged cells, in which the mechanical-electrical-thermal responses were all monitored. Test results indicate that the mechanical response of the aged cells is quite distinct from the pristine ones, characterized by a rightward shift of the force-displacement curve. Electrical and thermal responses of the aged cells were comparatively less severe. It is inferred that those deposits generated during the ageing process postpone the failure of cells. The short circuit of aged cells behaves relatively tenderly as short contact is alleviated by deposits on the surface of electrodes. By combining the present results with previous researches, correlation between the ageing mechanism and the mechanical abuse failure was sorted for different cells subjected to different ageing processes. It is recognized that changes in mechanical, electrical, and thermal responses of aged cells are highly dependent on both ageing condition and battery configuration.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"20 ","pages":"Article 100331"},"PeriodicalIF":15.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How does room temperature cycling ageing affect lithium-ion battery behaviors under extreme indentation?\",\"authors\":\"Yunlong Qu, Bobin Xing, Yong Xia, Qing Zhou\",\"doi\":\"10.1016/j.etran.2024.100331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Safety of lithium-ion battery (LIB) cells throughout the whole lifecycle has drawn enormous research interest. Understanding how cycling ageing affects the mechanical-electrical-thermal responses of LIB cells under mechanical abuse is meaningful for more considerate safety design. In the present study, impact of room temperature ageing on morphology of lithium-ion pouch cell was experimentally explored at first, which clearly identified the deposition phenomenon on electrodes induced by electrolyte consumption. Spherical indentation along out-of-plane direction was carried out on both pristine and aged cells, in which the mechanical-electrical-thermal responses were all monitored. Test results indicate that the mechanical response of the aged cells is quite distinct from the pristine ones, characterized by a rightward shift of the force-displacement curve. Electrical and thermal responses of the aged cells were comparatively less severe. It is inferred that those deposits generated during the ageing process postpone the failure of cells. The short circuit of aged cells behaves relatively tenderly as short contact is alleviated by deposits on the surface of electrodes. By combining the present results with previous researches, correlation between the ageing mechanism and the mechanical abuse failure was sorted for different cells subjected to different ageing processes. It is recognized that changes in mechanical, electrical, and thermal responses of aged cells are highly dependent on both ageing condition and battery configuration.</p></div>\",\"PeriodicalId\":36355,\"journal\":{\"name\":\"Etransportation\",\"volume\":\"20 \",\"pages\":\"Article 100331\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Etransportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590116824000213\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116824000213","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
How does room temperature cycling ageing affect lithium-ion battery behaviors under extreme indentation?
Safety of lithium-ion battery (LIB) cells throughout the whole lifecycle has drawn enormous research interest. Understanding how cycling ageing affects the mechanical-electrical-thermal responses of LIB cells under mechanical abuse is meaningful for more considerate safety design. In the present study, impact of room temperature ageing on morphology of lithium-ion pouch cell was experimentally explored at first, which clearly identified the deposition phenomenon on electrodes induced by electrolyte consumption. Spherical indentation along out-of-plane direction was carried out on both pristine and aged cells, in which the mechanical-electrical-thermal responses were all monitored. Test results indicate that the mechanical response of the aged cells is quite distinct from the pristine ones, characterized by a rightward shift of the force-displacement curve. Electrical and thermal responses of the aged cells were comparatively less severe. It is inferred that those deposits generated during the ageing process postpone the failure of cells. The short circuit of aged cells behaves relatively tenderly as short contact is alleviated by deposits on the surface of electrodes. By combining the present results with previous researches, correlation between the ageing mechanism and the mechanical abuse failure was sorted for different cells subjected to different ageing processes. It is recognized that changes in mechanical, electrical, and thermal responses of aged cells are highly dependent on both ageing condition and battery configuration.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.