Jan Nowak, Michał Tryniszewski, Michał Barbasiewicz
{"title":"β-内酯是否参与了碳基烯化反应?","authors":"Jan Nowak, Michał Tryniszewski, Michał Barbasiewicz","doi":"10.1055/a-2268-4386","DOIUrl":null,"url":null,"abstract":"<p>Heteroatom-based olefinating reagents (e.g., organic phosphonates, sulfonates, etc.) are used to transform carbonyl compounds into alkenes, and their mechanism of action involves aldol-type addition, cyclization, and fragmentation of four-membered ring intermediates. We have developed an analogous process using ethyl 1,1,1,3,3,3-hexafluoroisopropyl methylmalonate, which converts electrophilic aryl aldehydes into α-methylcinnamates in up to 70% yield. The reaction plausibly proceeds through the formation of β-lactone that spontaneously decarboxylates under the reaction conditions. The results shed light on the Knoevenagel–Doebner olefination, for which decarboxylative <i>anti</i>-fragmentation of aldol-type adducts is usually considered.</p> ","PeriodicalId":22319,"journal":{"name":"Synlett","volume":"56 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Are β-Lactones Involved in Carbon-Based Olefination Reactions?\",\"authors\":\"Jan Nowak, Michał Tryniszewski, Michał Barbasiewicz\",\"doi\":\"10.1055/a-2268-4386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heteroatom-based olefinating reagents (e.g., organic phosphonates, sulfonates, etc.) are used to transform carbonyl compounds into alkenes, and their mechanism of action involves aldol-type addition, cyclization, and fragmentation of four-membered ring intermediates. We have developed an analogous process using ethyl 1,1,1,3,3,3-hexafluoroisopropyl methylmalonate, which converts electrophilic aryl aldehydes into α-methylcinnamates in up to 70% yield. The reaction plausibly proceeds through the formation of β-lactone that spontaneously decarboxylates under the reaction conditions. The results shed light on the Knoevenagel–Doebner olefination, for which decarboxylative <i>anti</i>-fragmentation of aldol-type adducts is usually considered.</p> \",\"PeriodicalId\":22319,\"journal\":{\"name\":\"Synlett\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synlett\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2268-4386\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synlett","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1055/a-2268-4386","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Are β-Lactones Involved in Carbon-Based Olefination Reactions?
Heteroatom-based olefinating reagents (e.g., organic phosphonates, sulfonates, etc.) are used to transform carbonyl compounds into alkenes, and their mechanism of action involves aldol-type addition, cyclization, and fragmentation of four-membered ring intermediates. We have developed an analogous process using ethyl 1,1,1,3,3,3-hexafluoroisopropyl methylmalonate, which converts electrophilic aryl aldehydes into α-methylcinnamates in up to 70% yield. The reaction plausibly proceeds through the formation of β-lactone that spontaneously decarboxylates under the reaction conditions. The results shed light on the Knoevenagel–Doebner olefination, for which decarboxylative anti-fragmentation of aldol-type adducts is usually considered.
期刊介绍:
SYNLETT is an international journal reporting research results and current trends in chemical synthesis in short personalized reviews and preliminary communications. It covers all fields of scientific endeavor that involve organic synthesis, including catalysis, organometallic, medicinal, biological, and photochemistry, but also related disciplines and offers the possibility to publish scientific primary data.