{"title":"磁电效应对反铁磁自旋反转的巨门调制","authors":"Kakeru Ujimoto, Hiroki Sameshima, Kentaro Toyoki, Takahiro Moriyama, Kohji Nakamura, Yoshinori Kotani, Motohiro Suzuki, Ion Iino, Naomi Kawamura, Ryoichi Nakatani, Yu Shiratsuchi","doi":"10.1038/s41427-024-00541-z","DOIUrl":null,"url":null,"abstract":"<p>In this study, using the Pt/Cr<sub>2</sub>O<sub>3</sub>/Pt epitaxial trilayer, we demonstrate the giant voltage modulation of the antiferromagnetic spin reversal and the voltage-induced 180° switching of the Néel vector in maintaining a permanent magnetic field. We obtained a significant modulation efficiency of the switching field, Δ<i>μ</i><sub>0</sub><i>H</i><sub>SW</sub>/Δ<i>V</i> (Δ<i>μ</i><sub>0</sub><i>H</i><sub>SW</sub>/Δ<i>E</i>), reaching a maximum of −500 mT/V (−4.80 T nm/V); this value was more than 50 times greater than that of the ferromagnetic-based counterparts. From the temperature dependence of the modulation efficiency, X-ray magnetic circular dichroism measurements and first-principles calculations, we showed that the origin of the giant modulation efficiency relied on the electric field modulation of the net magnetization due to the magnetoelectric effect. From the first-principles calculation and the thickness effect on the offset electric field, we found that the interfacial magnetoelectric effect emerged. Our demonstration reveals the energy-efficient and widely applicable operation of an antiferromagnetic spin based on a mechanism distinct from magnetic anisotropy control.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"44 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Giant gate modulation of antiferromagnetic spin reversal by the magnetoelectric effect\",\"authors\":\"Kakeru Ujimoto, Hiroki Sameshima, Kentaro Toyoki, Takahiro Moriyama, Kohji Nakamura, Yoshinori Kotani, Motohiro Suzuki, Ion Iino, Naomi Kawamura, Ryoichi Nakatani, Yu Shiratsuchi\",\"doi\":\"10.1038/s41427-024-00541-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, using the Pt/Cr<sub>2</sub>O<sub>3</sub>/Pt epitaxial trilayer, we demonstrate the giant voltage modulation of the antiferromagnetic spin reversal and the voltage-induced 180° switching of the Néel vector in maintaining a permanent magnetic field. We obtained a significant modulation efficiency of the switching field, Δ<i>μ</i><sub>0</sub><i>H</i><sub>SW</sub>/Δ<i>V</i> (Δ<i>μ</i><sub>0</sub><i>H</i><sub>SW</sub>/Δ<i>E</i>), reaching a maximum of −500 mT/V (−4.80 T nm/V); this value was more than 50 times greater than that of the ferromagnetic-based counterparts. From the temperature dependence of the modulation efficiency, X-ray magnetic circular dichroism measurements and first-principles calculations, we showed that the origin of the giant modulation efficiency relied on the electric field modulation of the net magnetization due to the magnetoelectric effect. From the first-principles calculation and the thickness effect on the offset electric field, we found that the interfacial magnetoelectric effect emerged. Our demonstration reveals the energy-efficient and widely applicable operation of an antiferromagnetic spin based on a mechanism distinct from magnetic anisotropy control.</p>\",\"PeriodicalId\":19382,\"journal\":{\"name\":\"Npg Asia Materials\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Npg Asia Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41427-024-00541-z\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41427-024-00541-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Giant gate modulation of antiferromagnetic spin reversal by the magnetoelectric effect
In this study, using the Pt/Cr2O3/Pt epitaxial trilayer, we demonstrate the giant voltage modulation of the antiferromagnetic spin reversal and the voltage-induced 180° switching of the Néel vector in maintaining a permanent magnetic field. We obtained a significant modulation efficiency of the switching field, Δμ0HSW/ΔV (Δμ0HSW/ΔE), reaching a maximum of −500 mT/V (−4.80 T nm/V); this value was more than 50 times greater than that of the ferromagnetic-based counterparts. From the temperature dependence of the modulation efficiency, X-ray magnetic circular dichroism measurements and first-principles calculations, we showed that the origin of the giant modulation efficiency relied on the electric field modulation of the net magnetization due to the magnetoelectric effect. From the first-principles calculation and the thickness effect on the offset electric field, we found that the interfacial magnetoelectric effect emerged. Our demonstration reveals the energy-efficient and widely applicable operation of an antiferromagnetic spin based on a mechanism distinct from magnetic anisotropy control.
期刊介绍:
NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.