为无枝晶且稳定的锂金属电池开发原位聚合人工层

Junquan Lai, Rui Tan, Huai Jiang, Xinjing Huang, Zhongliang Tian, Bo Hong, Mengran Wang, Jie Li
{"title":"为无枝晶且稳定的锂金属电池开发原位聚合人工层","authors":"Junquan Lai,&nbsp;Rui Tan,&nbsp;Huai Jiang,&nbsp;Xinjing Huang,&nbsp;Zhongliang Tian,&nbsp;Bo Hong,&nbsp;Mengran Wang,&nbsp;Jie Li","doi":"10.1002/bte2.20230070","DOIUrl":null,"url":null,"abstract":"<p>Severe lithium dendrite issues bring a significant challenge for the practical application of Li metal anodes. In this study, a scalable spray-coating method is used to in situ construct an organic/inorganic composite interfacial layer including Li-Zn alloy and lithium polyacrylate on the surface of lithium metal. The Li-Zn alloy exhibits favorable lithiophilic and high Li<sup>+</sup> diffusion coefficient, whereas highly elastic lithium polyacrylate is a Li<sup>+</sup> conductor and provides excellent mechanical properties. Finally, the ZA-Li||ZA-Li cell shows stable cycling for over 1800 h with 1 mA cm<sup>−2</sup> at 2 h per cycle, which demonstrates a pronounced inhibition of lithium dendrite growth. Based on the above merits, this work would open a new avenue to develop advanced artificial interfacial layer with multiple capabilities for high-performance lithium metal batteries.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230070","citationCount":"0","resultStr":"{\"title\":\"Development of an in situ polymerized artificial layer for dendrite-free and stable lithium metal batteries\",\"authors\":\"Junquan Lai,&nbsp;Rui Tan,&nbsp;Huai Jiang,&nbsp;Xinjing Huang,&nbsp;Zhongliang Tian,&nbsp;Bo Hong,&nbsp;Mengran Wang,&nbsp;Jie Li\",\"doi\":\"10.1002/bte2.20230070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Severe lithium dendrite issues bring a significant challenge for the practical application of Li metal anodes. In this study, a scalable spray-coating method is used to in situ construct an organic/inorganic composite interfacial layer including Li-Zn alloy and lithium polyacrylate on the surface of lithium metal. The Li-Zn alloy exhibits favorable lithiophilic and high Li<sup>+</sup> diffusion coefficient, whereas highly elastic lithium polyacrylate is a Li<sup>+</sup> conductor and provides excellent mechanical properties. Finally, the ZA-Li||ZA-Li cell shows stable cycling for over 1800 h with 1 mA cm<sup>−2</sup> at 2 h per cycle, which demonstrates a pronounced inhibition of lithium dendrite growth. Based on the above merits, this work would open a new avenue to develop advanced artificial interfacial layer with multiple capabilities for high-performance lithium metal batteries.</p>\",\"PeriodicalId\":8807,\"journal\":{\"name\":\"Battery Energy\",\"volume\":\"3 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230070\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Battery Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

严重的锂枝晶问题给锂金属阳极的实际应用带来了巨大挑战。本研究采用可扩展的喷涂方法,在锂金属表面原位构建了包括锂锌合金和聚丙烯酸锂在内的有机/无机复合界面层。锂锌合金具有良好的亲锂性和较高的锂+扩散系数,而高弹性的聚丙烯酸锂则是锂+的导体,并具有优异的机械性能。最后,ZA-Li||ZA-Li 电池以 1 mA cm-2 的电流稳定循环超过 1800 小时,每次循环 2 小时,这表明锂枝晶的生长受到了明显的抑制。基于上述优点,这项工作将为开发具有多种功能的先进人工界面层开辟一条新的途径,以用于高性能锂金属电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of an in situ polymerized artificial layer for dendrite-free and stable lithium metal batteries

Severe lithium dendrite issues bring a significant challenge for the practical application of Li metal anodes. In this study, a scalable spray-coating method is used to in situ construct an organic/inorganic composite interfacial layer including Li-Zn alloy and lithium polyacrylate on the surface of lithium metal. The Li-Zn alloy exhibits favorable lithiophilic and high Li+ diffusion coefficient, whereas highly elastic lithium polyacrylate is a Li+ conductor and provides excellent mechanical properties. Finally, the ZA-Li||ZA-Li cell shows stable cycling for over 1800 h with 1 mA cm−2 at 2 h per cycle, which demonstrates a pronounced inhibition of lithium dendrite growth. Based on the above merits, this work would open a new avenue to develop advanced artificial interfacial layer with multiple capabilities for high-performance lithium metal batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Cover Image, Volume 3, Issue 6, November 2024 Lithium Ion Batteries: Characteristics, Recycling and Deep-Sea Mining ZnxMnO2/PPy Nanowires Composite as Cathode Material for Aqueous Zinc-Ion Hybrid Supercapacitors Manipulation in the In Situ Growth Design Parameters of Aqueous Zinc-Based Electrodes for Batteries: The Fundamentals and Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1