Dan Wang, Rolf L. Romer, Fulai Liu, Johannes Glodny
{"title":"辉绿岩片岩包裹的高T和低T蚀变岩中锂和硼同位素的行为","authors":"Dan Wang, Rolf L. Romer, Fulai Liu, Johannes Glodny","doi":"10.1007/s00410-024-02124-1","DOIUrl":null,"url":null,"abstract":"<div><p>Subduction zones are critical sites for recycling of Li and B into the mantle. The way of redistribution of Li and B and their isotopes in subduction settings is debated, and there is a lack of detailed studies on Li and B partitioning between minerals of different types of eclogites and the host rocks of the eclogites. We present Li and B concentration data of minerals and Li and B whole-rock isotope data for low-<i>T</i> and high-<i>T</i> eclogites and their phengite schist host rocks from the Changning–Menglian suture zone, SW China. Omphacite controls the Li budget in both the low-<i>T</i> and high-<i>T</i> eclogites. Low-<i>T</i> eclogites have Li and δ<sup>7</sup>Li values (8.4–27.0 ppm, – 5.5 to + 3.2 ‰) similar to the phengite schists (8.7–27.0 ppm, – 3.8 to + 3.0 ‰), suggesting that Li was added to low-<i>T</i> eclogites from the phengite schists. In contrast, high-<i>T</i> eclogites have much lower δ<sup>7</sup>Li values (– 13.2 to – 5.8 ‰) than the phengite schists, reflecting prograde loss of Li or exchange with wall rocks characterized by low δ<sup>7</sup>Li values. Phengite and retrograde amphibole/muscovite are the major B hosts for low-<i>T</i> and high-<i>T</i> eclogites, respectively. The budgets and isotopic compositions of B in eclogites are affected by the infiltration of fluids derived from phengite schists, as indicated by eclogite δ<sup>11</sup>B values (– 15.1 to – 8.1 ‰) overlapping with the values of the phengite schists (– 22.8 to – 9.5 ‰). Lithium and B in eclogites are hosted in different mineral phases that may have formed at different stages of metamorphism, implying that the contents and isotopic compositions of Li and B may become decoupled during subduction-related fluid-mediated redistribution. We suggest a mineralogical control on the redistribution of Li and B in eclogites during subduction and the exchange of Li and B with the immediate wall rocks. The observed contrasting Li and B isotopic signatures in eclogites are likely caused by a fluid-mediated exchange with different types of wall rocks during both prograde metamorphism and exhumation.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"179 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The behavior of Li and B isotopes in high-T and low-T eclogites enclosed by phengite schists\",\"authors\":\"Dan Wang, Rolf L. Romer, Fulai Liu, Johannes Glodny\",\"doi\":\"10.1007/s00410-024-02124-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Subduction zones are critical sites for recycling of Li and B into the mantle. The way of redistribution of Li and B and their isotopes in subduction settings is debated, and there is a lack of detailed studies on Li and B partitioning between minerals of different types of eclogites and the host rocks of the eclogites. We present Li and B concentration data of minerals and Li and B whole-rock isotope data for low-<i>T</i> and high-<i>T</i> eclogites and their phengite schist host rocks from the Changning–Menglian suture zone, SW China. Omphacite controls the Li budget in both the low-<i>T</i> and high-<i>T</i> eclogites. Low-<i>T</i> eclogites have Li and δ<sup>7</sup>Li values (8.4–27.0 ppm, – 5.5 to + 3.2 ‰) similar to the phengite schists (8.7–27.0 ppm, – 3.8 to + 3.0 ‰), suggesting that Li was added to low-<i>T</i> eclogites from the phengite schists. In contrast, high-<i>T</i> eclogites have much lower δ<sup>7</sup>Li values (– 13.2 to – 5.8 ‰) than the phengite schists, reflecting prograde loss of Li or exchange with wall rocks characterized by low δ<sup>7</sup>Li values. Phengite and retrograde amphibole/muscovite are the major B hosts for low-<i>T</i> and high-<i>T</i> eclogites, respectively. The budgets and isotopic compositions of B in eclogites are affected by the infiltration of fluids derived from phengite schists, as indicated by eclogite δ<sup>11</sup>B values (– 15.1 to – 8.1 ‰) overlapping with the values of the phengite schists (– 22.8 to – 9.5 ‰). Lithium and B in eclogites are hosted in different mineral phases that may have formed at different stages of metamorphism, implying that the contents and isotopic compositions of Li and B may become decoupled during subduction-related fluid-mediated redistribution. We suggest a mineralogical control on the redistribution of Li and B in eclogites during subduction and the exchange of Li and B with the immediate wall rocks. The observed contrasting Li and B isotopic signatures in eclogites are likely caused by a fluid-mediated exchange with different types of wall rocks during both prograde metamorphism and exhumation.</p></div>\",\"PeriodicalId\":526,\"journal\":{\"name\":\"Contributions to Mineralogy and Petrology\",\"volume\":\"179 5\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions to Mineralogy and Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00410-024-02124-1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-024-02124-1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
The behavior of Li and B isotopes in high-T and low-T eclogites enclosed by phengite schists
Subduction zones are critical sites for recycling of Li and B into the mantle. The way of redistribution of Li and B and their isotopes in subduction settings is debated, and there is a lack of detailed studies on Li and B partitioning between minerals of different types of eclogites and the host rocks of the eclogites. We present Li and B concentration data of minerals and Li and B whole-rock isotope data for low-T and high-T eclogites and their phengite schist host rocks from the Changning–Menglian suture zone, SW China. Omphacite controls the Li budget in both the low-T and high-T eclogites. Low-T eclogites have Li and δ7Li values (8.4–27.0 ppm, – 5.5 to + 3.2 ‰) similar to the phengite schists (8.7–27.0 ppm, – 3.8 to + 3.0 ‰), suggesting that Li was added to low-T eclogites from the phengite schists. In contrast, high-T eclogites have much lower δ7Li values (– 13.2 to – 5.8 ‰) than the phengite schists, reflecting prograde loss of Li or exchange with wall rocks characterized by low δ7Li values. Phengite and retrograde amphibole/muscovite are the major B hosts for low-T and high-T eclogites, respectively. The budgets and isotopic compositions of B in eclogites are affected by the infiltration of fluids derived from phengite schists, as indicated by eclogite δ11B values (– 15.1 to – 8.1 ‰) overlapping with the values of the phengite schists (– 22.8 to – 9.5 ‰). Lithium and B in eclogites are hosted in different mineral phases that may have formed at different stages of metamorphism, implying that the contents and isotopic compositions of Li and B may become decoupled during subduction-related fluid-mediated redistribution. We suggest a mineralogical control on the redistribution of Li and B in eclogites during subduction and the exchange of Li and B with the immediate wall rocks. The observed contrasting Li and B isotopic signatures in eclogites are likely caused by a fluid-mediated exchange with different types of wall rocks during both prograde metamorphism and exhumation.
期刊介绍:
Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy.
Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.