{"title":"带有移动热源和电磁场的旋转微极热弹性介质中的高阶热传导模型","authors":"Sourov Roy, Abhijit Lahiri","doi":"10.1007/s11043-024-09694-4","DOIUrl":null,"url":null,"abstract":"<div><p>This article investigates the influence of an electromagnetic field, angular velocity, and internal heat sources on two-dimensional thermoelasticity in a micropolar thermoelastic medium using a generalized model of higher-order (multi-phase-lag) heat conduction. The governing coupled partial differential equations are transformed through the normal mode analysis method. The eigenvalue approach is then applied to determine analytically the displacement components, stress components, couple stresses, and temperature distributions from the vector-matrix differential equation. The study’s findings are validated through boundary conditions, and graphical representations highlight the influence of angular velocity, magnetic field, and heat sources in this multi-phase-lag model. The graphical comparison of different thermoelastic models is presented, and the inclusion of tabular data enhances clarity, facilitating a comparative analysis of field variables.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 4","pages":"2859 - 2877"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher-order heat conduction model in a rotating micropolar thermoelastic medium with moving heat source and electromagnetic field\",\"authors\":\"Sourov Roy, Abhijit Lahiri\",\"doi\":\"10.1007/s11043-024-09694-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article investigates the influence of an electromagnetic field, angular velocity, and internal heat sources on two-dimensional thermoelasticity in a micropolar thermoelastic medium using a generalized model of higher-order (multi-phase-lag) heat conduction. The governing coupled partial differential equations are transformed through the normal mode analysis method. The eigenvalue approach is then applied to determine analytically the displacement components, stress components, couple stresses, and temperature distributions from the vector-matrix differential equation. The study’s findings are validated through boundary conditions, and graphical representations highlight the influence of angular velocity, magnetic field, and heat sources in this multi-phase-lag model. The graphical comparison of different thermoelastic models is presented, and the inclusion of tabular data enhances clarity, facilitating a comparative analysis of field variables.</p></div>\",\"PeriodicalId\":698,\"journal\":{\"name\":\"Mechanics of Time-Dependent Materials\",\"volume\":\"28 4\",\"pages\":\"2859 - 2877\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Time-Dependent Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11043-024-09694-4\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-024-09694-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Higher-order heat conduction model in a rotating micropolar thermoelastic medium with moving heat source and electromagnetic field
This article investigates the influence of an electromagnetic field, angular velocity, and internal heat sources on two-dimensional thermoelasticity in a micropolar thermoelastic medium using a generalized model of higher-order (multi-phase-lag) heat conduction. The governing coupled partial differential equations are transformed through the normal mode analysis method. The eigenvalue approach is then applied to determine analytically the displacement components, stress components, couple stresses, and temperature distributions from the vector-matrix differential equation. The study’s findings are validated through boundary conditions, and graphical representations highlight the influence of angular velocity, magnetic field, and heat sources in this multi-phase-lag model. The graphical comparison of different thermoelastic models is presented, and the inclusion of tabular data enhances clarity, facilitating a comparative analysis of field variables.
期刊介绍:
Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties.
The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.