通过氢键动力学揭示基因编码麦芽糖生物传感器中荧光的异相调制作用

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-04-04 DOI:10.1002/prot.26688
Melike Berksoz, Canan Atilgan
{"title":"通过氢键动力学揭示基因编码麦芽糖生物传感器中荧光的异相调制作用","authors":"Melike Berksoz, Canan Atilgan","doi":"10.1002/prot.26688","DOIUrl":null,"url":null,"abstract":"Genetically encoded fluorescent biosensors (GEFBs) proved to be reliable tracers for many metabolites and cellular processes. In the simplest case, a fluorescent protein (FP) is genetically fused to a sensing protein which undergoes a conformational change upon ligand binding. This drives a rearrangement in the chromophore environment and changes the spectral properties of the FP. Structural determinants of successful biosensors are revealed only in hindsight when the crystal structures of both ligand‐bound and ligand‐free forms are available. This makes the development of new biosensors for desired analytes a long trial‐and‐error process. In the current study, we conducted μs‐long all atom molecular dynamics (MD) simulations of a maltose biosensor in both the <jats:italic>apo</jats:italic> (dark) and <jats:italic>holo</jats:italic> (bright) forms. We performed detailed hydrogen bond occupancy analyses to shed light on the mechanism of ligand induced conformational change in the sensor protein and its allosteric effect on the chromophore environment. We find that two strong indicators for distinguishing bright and dark states of biosensors are due to substantial changes in hydrogen bond dynamics in the system and solvent accessibility of the chromophore.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Allosteric modulation of fluorescence revealed by hydrogen bond dynamics in a genetically encoded maltose biosensor\",\"authors\":\"Melike Berksoz, Canan Atilgan\",\"doi\":\"10.1002/prot.26688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetically encoded fluorescent biosensors (GEFBs) proved to be reliable tracers for many metabolites and cellular processes. In the simplest case, a fluorescent protein (FP) is genetically fused to a sensing protein which undergoes a conformational change upon ligand binding. This drives a rearrangement in the chromophore environment and changes the spectral properties of the FP. Structural determinants of successful biosensors are revealed only in hindsight when the crystal structures of both ligand‐bound and ligand‐free forms are available. This makes the development of new biosensors for desired analytes a long trial‐and‐error process. In the current study, we conducted μs‐long all atom molecular dynamics (MD) simulations of a maltose biosensor in both the <jats:italic>apo</jats:italic> (dark) and <jats:italic>holo</jats:italic> (bright) forms. We performed detailed hydrogen bond occupancy analyses to shed light on the mechanism of ligand induced conformational change in the sensor protein and its allosteric effect on the chromophore environment. We find that two strong indicators for distinguishing bright and dark states of biosensors are due to substantial changes in hydrogen bond dynamics in the system and solvent accessibility of the chromophore.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prot.26688\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26688","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

事实证明,基因编码荧光生物传感器(GEFB)是许多代谢物和细胞过程的可靠示踪剂。在最简单的情况下,荧光蛋白(FP)与传感蛋白进行基因融合,而传感蛋白在与配体结合时会发生构象变化。这促使发色团环境发生重排,并改变荧光蛋白的光谱特性。成功的生物传感器的结构决定因素只有在配体结合型和无配体型的晶体结构都可用时才会显现出来。这就使得为所需分析物开发新的生物传感器成为一个漫长的试错过程。在当前的研究中,我们对麦芽糖生物传感器的 apo(暗)和 holo(亮)两种形态进行了长达 μs 的全原子分子动力学(MD)模拟。我们进行了详细的氢键占据分析,以揭示配体诱导传感器蛋白质构象变化的机制及其对发色团环境的异构效应。我们发现,区分生物传感器明暗状态的两个强有力的指标是由于系统中氢键动力学和发色团的溶剂可及性发生了重大变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Allosteric modulation of fluorescence revealed by hydrogen bond dynamics in a genetically encoded maltose biosensor
Genetically encoded fluorescent biosensors (GEFBs) proved to be reliable tracers for many metabolites and cellular processes. In the simplest case, a fluorescent protein (FP) is genetically fused to a sensing protein which undergoes a conformational change upon ligand binding. This drives a rearrangement in the chromophore environment and changes the spectral properties of the FP. Structural determinants of successful biosensors are revealed only in hindsight when the crystal structures of both ligand‐bound and ligand‐free forms are available. This makes the development of new biosensors for desired analytes a long trial‐and‐error process. In the current study, we conducted μs‐long all atom molecular dynamics (MD) simulations of a maltose biosensor in both the apo (dark) and holo (bright) forms. We performed detailed hydrogen bond occupancy analyses to shed light on the mechanism of ligand induced conformational change in the sensor protein and its allosteric effect on the chromophore environment. We find that two strong indicators for distinguishing bright and dark states of biosensors are due to substantial changes in hydrogen bond dynamics in the system and solvent accessibility of the chromophore.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1