求助PDF
{"title":"不同热煤对通气甲烷和煤粉混合燃烧特性的影响研究","authors":"Chaoyu Hao, Yufei Liu, Yankun Chen, Yachao Zhang, Cunbao Deng","doi":"10.1002/ghg.2271","DOIUrl":null,"url":null,"abstract":"<p>To effectively utilize ventilation air methane (VAM), it is proposed to pass it into the boiler of the coal-fired power plant for mixed combustion. However, the different types of thermal coal utilized present distinct characteristics when mixed with VAM. In this paper, lignite, bituminous coal, and anthracite are selected to study the CH<sub>4</sub> conversion rate, system ignition temperature, and NO emission characteristics of the VAM-pulverized coal coupled system on a fluidized bed experimental platform. The experimental results show that the ignition temperatures of VAM are 748, 736, and 732 °C when the CH<sub>4</sub> concentration is 0.25, 0.5, and 0.75%. After the addition of thermal coal, the ignition temperature decreased significantly. When the CH<sub>4</sub> concentration is 0.25%, the ignition temperature of the lignite-VAM system is the lowest, which is 450 °C. Anthracite has the strongest catalytic effect on CH<sub>4</sub> combustion. When the heating rate is 5 °C /min, the reaction rate of CH<sub>4</sub> is the fastest in the anthracite-VAM coupled system. Under laboratory conditions, the peak NO concentration in the coal-VAM coupled system was lignite > bituminous coal > anthracite at different CH<sub>4</sub> concentrations, and the CH<sub>4</sub> in VAM had a reducing action on the NO generated during mixed combustion, with a stronger reducing effect observed as the CH<sub>4</sub> concentration increased. The results of this study can lay the foundation for the industrial application of the mixed combustion of VAM and thermal coal, and be of great significance for solving the practical problems caused by the change of boiler coal types. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 3","pages":"427-441"},"PeriodicalIF":2.7000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the influence of different thermal coals on the mixed-burning characteristics of ventilation air methane and pulverized coal\",\"authors\":\"Chaoyu Hao, Yufei Liu, Yankun Chen, Yachao Zhang, Cunbao Deng\",\"doi\":\"10.1002/ghg.2271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To effectively utilize ventilation air methane (VAM), it is proposed to pass it into the boiler of the coal-fired power plant for mixed combustion. However, the different types of thermal coal utilized present distinct characteristics when mixed with VAM. In this paper, lignite, bituminous coal, and anthracite are selected to study the CH<sub>4</sub> conversion rate, system ignition temperature, and NO emission characteristics of the VAM-pulverized coal coupled system on a fluidized bed experimental platform. The experimental results show that the ignition temperatures of VAM are 748, 736, and 732 °C when the CH<sub>4</sub> concentration is 0.25, 0.5, and 0.75%. After the addition of thermal coal, the ignition temperature decreased significantly. When the CH<sub>4</sub> concentration is 0.25%, the ignition temperature of the lignite-VAM system is the lowest, which is 450 °C. Anthracite has the strongest catalytic effect on CH<sub>4</sub> combustion. When the heating rate is 5 °C /min, the reaction rate of CH<sub>4</sub> is the fastest in the anthracite-VAM coupled system. Under laboratory conditions, the peak NO concentration in the coal-VAM coupled system was lignite > bituminous coal > anthracite at different CH<sub>4</sub> concentrations, and the CH<sub>4</sub> in VAM had a reducing action on the NO generated during mixed combustion, with a stronger reducing effect observed as the CH<sub>4</sub> concentration increased. The results of this study can lay the foundation for the industrial application of the mixed combustion of VAM and thermal coal, and be of great significance for solving the practical problems caused by the change of boiler coal types. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.</p>\",\"PeriodicalId\":12796,\"journal\":{\"name\":\"Greenhouse Gases: Science and Technology\",\"volume\":\"14 3\",\"pages\":\"427-441\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Greenhouse Gases: Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2271\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Greenhouse Gases: Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2271","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
引用
批量引用