Vina-FPGA-Cluster:基于多 FPGA 的分子对接工具,具有高精度和多级并行性

Ming Ling;Zhihao Feng;Ruiqi Chen;Yi Shao;Shidi Tang;Yanxiang Zhu
{"title":"Vina-FPGA-Cluster:基于多 FPGA 的分子对接工具,具有高精度和多级并行性","authors":"Ming Ling;Zhihao Feng;Ruiqi Chen;Yi Shao;Shidi Tang;Yanxiang Zhu","doi":"10.1109/TBCAS.2024.3388323","DOIUrl":null,"url":null,"abstract":"AutoDock Vina (Vina) stands out among numerous molecular docking tools due to its precision and comparatively high speed, playing a key role in the drug discovery process. Hardware acceleration of Vina on FPGA platforms offers a high energy-efficiency approach to speed up the docking process. However, previous FPGA-based Vina accelerators exhibit several shortcomings: 1) Simple uniform quantization results in inevitable accuracy drop; 2) Due to Vina's complex computing process, the evaluation and optimization phase for hardware design becomes extended; 3) The iterative computations in Vina constrain the potential for further parallelization. 4) The system's scalability is limited by its unwieldy architecture. To address the above challenges, we propose Vina-FPGA-cluster, a multi-FPGA-based molecular docking tool enabling high-accuracy and multi-level parallel Vina acceleration. Standing upon the shoulders of Vina-FPGA, we first adapt hybrid fixed-point quantization to minimize accuracy loss. We then propose a SystemC-based model, accelerating the hardware accelerator architecture design evaluation. Next, we propose a novel bidirectional AG module for data-level parallelism. Finally, we optimize the system architecture for scalable deployment on multiple Xilinx ZCU104 boards, achieving task-level parallelism. Vina-FPGA-cluster is tested on three representative molecular docking datasets. The experiment results indicate that in the context of RMSD (for successful docking outcomes with metrics below 2Å), Vina-FPGA-cluster shows a mere 0.2% lose. Relative to CPU and Vina-FPGA, Vina-FPGA-cluster achieves 27.33\n<inline-formula><tex-math>$\\times$</tex-math></inline-formula>\n and 7.26\n<inline-formula><tex-math>$\\times$</tex-math></inline-formula>\n speedup, respectively. Notably, Vina-FPGA-cluster is able to deliver the 1.38\n<inline-formula><tex-math>$\\times$</tex-math></inline-formula>\n speedup as GPU implementation (Vina-GPU), with just the 28.99% power consumption.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 6","pages":"1321-1337"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vina-FPGA-Cluster: Multi-FPGA Based Molecular Docking Tool With High-Accuracy and Multi-Level Parallelism\",\"authors\":\"Ming Ling;Zhihao Feng;Ruiqi Chen;Yi Shao;Shidi Tang;Yanxiang Zhu\",\"doi\":\"10.1109/TBCAS.2024.3388323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AutoDock Vina (Vina) stands out among numerous molecular docking tools due to its precision and comparatively high speed, playing a key role in the drug discovery process. Hardware acceleration of Vina on FPGA platforms offers a high energy-efficiency approach to speed up the docking process. However, previous FPGA-based Vina accelerators exhibit several shortcomings: 1) Simple uniform quantization results in inevitable accuracy drop; 2) Due to Vina's complex computing process, the evaluation and optimization phase for hardware design becomes extended; 3) The iterative computations in Vina constrain the potential for further parallelization. 4) The system's scalability is limited by its unwieldy architecture. To address the above challenges, we propose Vina-FPGA-cluster, a multi-FPGA-based molecular docking tool enabling high-accuracy and multi-level parallel Vina acceleration. Standing upon the shoulders of Vina-FPGA, we first adapt hybrid fixed-point quantization to minimize accuracy loss. We then propose a SystemC-based model, accelerating the hardware accelerator architecture design evaluation. Next, we propose a novel bidirectional AG module for data-level parallelism. Finally, we optimize the system architecture for scalable deployment on multiple Xilinx ZCU104 boards, achieving task-level parallelism. Vina-FPGA-cluster is tested on three representative molecular docking datasets. The experiment results indicate that in the context of RMSD (for successful docking outcomes with metrics below 2Å), Vina-FPGA-cluster shows a mere 0.2% lose. Relative to CPU and Vina-FPGA, Vina-FPGA-cluster achieves 27.33\\n<inline-formula><tex-math>$\\\\times$</tex-math></inline-formula>\\n and 7.26\\n<inline-formula><tex-math>$\\\\times$</tex-math></inline-formula>\\n speedup, respectively. Notably, Vina-FPGA-cluster is able to deliver the 1.38\\n<inline-formula><tex-math>$\\\\times$</tex-math></inline-formula>\\n speedup as GPU implementation (Vina-GPU), with just the 28.99% power consumption.\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":\"18 6\",\"pages\":\"1321-1337\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10500753/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10500753/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

AutoDock Vina (Vina)以其精度和相对较高的速度在众多分子对接工具中脱颖而出,在药物发现过程中发挥着关键作用。Vina在FPGA平台上的硬件加速提供了一种高能效的方法来加快对接过程。然而,以往基于fpga的Vina加速器存在以下几个缺点:1)简单的均匀量化导致精度不可避免地下降;2)由于Vina复杂的计算过程,使得硬件设计的评估和优化阶段延长;3) Vina中的迭代计算限制了进一步并行化的潜力。4)系统的可扩展性受到其笨重架构的限制。为了解决上述挑战,我们提出了基于多fpga的分子对接工具Vina- fpga -cluster,实现高精度和多级并行Vina加速。站在Vina-FPGA的肩膀上,我们首先采用混合定点量化来最小化精度损失。然后,我们提出了一个基于systemc的模型,加速了硬件加速器架构的设计评估。接下来,我们提出了一种新的双向AG模块,用于数据级并行。最后,我们优化了系统架构,以便在多个Xilinx ZCU104板上可扩展部署,实现任务级并行。在三个具有代表性的分子对接数据集上对vina - fpga集群进行了测试。实验结果表明,在RMSD的背景下(对于以下指标的成功对接结果2Å), vina - fpga集群仅显示0.2%的损失。相对于CPU和Vina-FPGA, Vina-FPGA集群分别实现27.33$\times$和7.26$\times$的加速。值得注意的是,与GPU实现(Vina-GPU)相比,vina - fpga集群能够提供1.38倍的加速,而功耗仅为28.99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vina-FPGA-Cluster: Multi-FPGA Based Molecular Docking Tool With High-Accuracy and Multi-Level Parallelism
AutoDock Vina (Vina) stands out among numerous molecular docking tools due to its precision and comparatively high speed, playing a key role in the drug discovery process. Hardware acceleration of Vina on FPGA platforms offers a high energy-efficiency approach to speed up the docking process. However, previous FPGA-based Vina accelerators exhibit several shortcomings: 1) Simple uniform quantization results in inevitable accuracy drop; 2) Due to Vina's complex computing process, the evaluation and optimization phase for hardware design becomes extended; 3) The iterative computations in Vina constrain the potential for further parallelization. 4) The system's scalability is limited by its unwieldy architecture. To address the above challenges, we propose Vina-FPGA-cluster, a multi-FPGA-based molecular docking tool enabling high-accuracy and multi-level parallel Vina acceleration. Standing upon the shoulders of Vina-FPGA, we first adapt hybrid fixed-point quantization to minimize accuracy loss. We then propose a SystemC-based model, accelerating the hardware accelerator architecture design evaluation. Next, we propose a novel bidirectional AG module for data-level parallelism. Finally, we optimize the system architecture for scalable deployment on multiple Xilinx ZCU104 boards, achieving task-level parallelism. Vina-FPGA-cluster is tested on three representative molecular docking datasets. The experiment results indicate that in the context of RMSD (for successful docking outcomes with metrics below 2Å), Vina-FPGA-cluster shows a mere 0.2% lose. Relative to CPU and Vina-FPGA, Vina-FPGA-cluster achieves 27.33 $\times$ and 7.26 $\times$ speedup, respectively. Notably, Vina-FPGA-cluster is able to deliver the 1.38 $\times$ speedup as GPU implementation (Vina-GPU), with just the 28.99% power consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Erratum to “Design of an Extreme Low Cutoff Frequency Highpass Frontend for CMOS ISFET via Direct Tunneling Principle” IEEE Transactions on Biomedical Circuits and Systems Publication Information IEEE Circuits and Systems Society Information Guest Editorial: Ultralow-Power Technologies for Edge Computing in Human-Machine Interface Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1