调整后协方差最大化:用于分类的新监督降维方法

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Computational Statistics Pub Date : 2024-04-02 DOI:10.1007/s00180-024-01472-7
Hyejoon Park, Hyunjoong Kim, Yung-Seop Lee
{"title":"调整后协方差最大化:用于分类的新监督降维方法","authors":"Hyejoon Park, Hyunjoong Kim, Yung-Seop Lee","doi":"10.1007/s00180-024-01472-7","DOIUrl":null,"url":null,"abstract":"<p>This study proposes a new linear dimension reduction technique called Maximizing Adjusted Covariance (MAC), which is suitable for supervised classification. The new approach is to adjust the covariance matrix between input and target variables using the within-class sum of squares, thereby promoting class separation after linear dimension reduction. MAC has a low computational cost and can complement existing linear dimensionality reduction techniques for classification. In this study, the classification performance by MAC was compared with those of the existing linear dimension reduction methods using 44 datasets. In most of the classification models used in the experiment, the MAC dimension reduction method showed better classification accuracy and F1 score than other linear dimension reduction methods.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"53 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximizing adjusted covariance: new supervised dimension reduction for classification\",\"authors\":\"Hyejoon Park, Hyunjoong Kim, Yung-Seop Lee\",\"doi\":\"10.1007/s00180-024-01472-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study proposes a new linear dimension reduction technique called Maximizing Adjusted Covariance (MAC), which is suitable for supervised classification. The new approach is to adjust the covariance matrix between input and target variables using the within-class sum of squares, thereby promoting class separation after linear dimension reduction. MAC has a low computational cost and can complement existing linear dimensionality reduction techniques for classification. In this study, the classification performance by MAC was compared with those of the existing linear dimension reduction methods using 44 datasets. In most of the classification models used in the experiment, the MAC dimension reduction method showed better classification accuracy and F1 score than other linear dimension reduction methods.</p>\",\"PeriodicalId\":55223,\"journal\":{\"name\":\"Computational Statistics\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01472-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01472-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新的线性降维技术--最大化调整协方差(MAC),它适用于监督分类。新方法是利用类内平方和调整输入变量和目标变量之间的协方差矩阵,从而促进线性降维后的类分离。MAC 的计算成本较低,可作为现有线性降维分类技术的补充。本研究使用 44 个数据集比较了 MAC 与现有线性降维方法的分类性能。在实验中使用的大多数分类模型中,MAC 降维方法的分类准确率和 F1 分数都优于其他线性降维方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximizing adjusted covariance: new supervised dimension reduction for classification

This study proposes a new linear dimension reduction technique called Maximizing Adjusted Covariance (MAC), which is suitable for supervised classification. The new approach is to adjust the covariance matrix between input and target variables using the within-class sum of squares, thereby promoting class separation after linear dimension reduction. MAC has a low computational cost and can complement existing linear dimensionality reduction techniques for classification. In this study, the classification performance by MAC was compared with those of the existing linear dimension reduction methods using 44 datasets. In most of the classification models used in the experiment, the MAC dimension reduction method showed better classification accuracy and F1 score than other linear dimension reduction methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
期刊最新文献
Bayes estimation of ratio of scale-like parameters for inverse Gaussian distributions and applications to classification Multivariate approaches to investigate the home and away behavior of football teams playing football matches Kendall correlations and radar charts to include goals for and goals against in soccer rankings Bayesian adaptive lasso quantile regression with non-ignorable missing responses Statistical visualisation of tidy and geospatial data in R via kernel smoothing methods in the eks package
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1