模拟指尖的 12×16 200μm 分辨率电子皮肤 Taxel 读出芯片,具有每个 Taxel 的尖峰读出和嵌入式感受场处理功能

Mark Daniel Alea;Ali Safa;Flavio Giacomozzi;Andrea Adami;Inci Rüya Temel;Maria Atalaia Rosa;Leandro Lorenzelli;Georges Gielen
{"title":"模拟指尖的 12×16 200μm 分辨率电子皮肤 Taxel 读出芯片,具有每个 Taxel 的尖峰读出和嵌入式感受场处理功能","authors":"Mark Daniel Alea;Ali Safa;Flavio Giacomozzi;Andrea Adami;Inci Rüya Temel;Maria Atalaia Rosa;Leandro Lorenzelli;Georges Gielen","doi":"10.1109/TBCAS.2024.3387545","DOIUrl":null,"url":null,"abstract":"This paper presents an electronic skin (\n<italic>e</i>\n-skin) taxel array readout chip in 0.18\n<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>\nm CMOS technology, achieving the highest reported spatial resolution of 200\n<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>\nm, comparable to human fingertips. A key innovation is the integration on chip of a 12\n<inline-formula><tex-math>$\\times$</tex-math></inline-formula>\n16 polyvinylidene fluoride (PVDF)-based piezoelectric sensor array with per-taxel signal conditioning frontend and spiking readout combined with local embedded neuromorphic first-order processing through Complex Receptive Fields (CRFs). Experimental results show that Spiking Neural Network (SNN)-based classification of the chip's spatiotemporal spiking output for input tactile stimuli such as texture and flutter frequency achieves excellent accuracies up to 97.1\n<inline-formula><tex-math>$\\%$</tex-math></inline-formula>\n and 99.2\n<inline-formula><tex-math>$\\%$</tex-math></inline-formula>\n, respectively. SNN-based classification of the indentation period applied to the on-chip PVDF sensors achieved 95.5\n<inline-formula><tex-math>$\\%$</tex-math></inline-formula>\n classification accuracy, despite using only a small 256-neuron SNN classifier, a low equivalent spike encoding resolution of 3-5 bits, and a sub-Nyquist 2.2kevent/s population spiking rate, a state-of-the-art power consumption of 12.33nW per-taxel, and 75\n<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>\nW-5mW for the entire chip is obtained. Finally, a comparison of the texture classification accuracies between two on-chip spike encoder outputs shows that the proposed neuromorphic level-crossing sampling (N-LCS) architecture with a decaying threshold outperforms the conventional bipolar level-crossing sampling (LCS) architecture with fixed threshold.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 6","pages":"1308-1320"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fingertip-Mimicking 12$\\\\times$16 200 $\\\\mu$m-Resolution e-Skin Taxel Readout Chip With Per-Taxel Spiking Readout and Embedded Receptive Field Processing\",\"authors\":\"Mark Daniel Alea;Ali Safa;Flavio Giacomozzi;Andrea Adami;Inci Rüya Temel;Maria Atalaia Rosa;Leandro Lorenzelli;Georges Gielen\",\"doi\":\"10.1109/TBCAS.2024.3387545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an electronic skin (\\n<italic>e</i>\\n-skin) taxel array readout chip in 0.18\\n<inline-formula><tex-math>$\\\\mu$</tex-math></inline-formula>\\nm CMOS technology, achieving the highest reported spatial resolution of 200\\n<inline-formula><tex-math>$\\\\mu$</tex-math></inline-formula>\\nm, comparable to human fingertips. A key innovation is the integration on chip of a 12\\n<inline-formula><tex-math>$\\\\times$</tex-math></inline-formula>\\n16 polyvinylidene fluoride (PVDF)-based piezoelectric sensor array with per-taxel signal conditioning frontend and spiking readout combined with local embedded neuromorphic first-order processing through Complex Receptive Fields (CRFs). Experimental results show that Spiking Neural Network (SNN)-based classification of the chip's spatiotemporal spiking output for input tactile stimuli such as texture and flutter frequency achieves excellent accuracies up to 97.1\\n<inline-formula><tex-math>$\\\\%$</tex-math></inline-formula>\\n and 99.2\\n<inline-formula><tex-math>$\\\\%$</tex-math></inline-formula>\\n, respectively. SNN-based classification of the indentation period applied to the on-chip PVDF sensors achieved 95.5\\n<inline-formula><tex-math>$\\\\%$</tex-math></inline-formula>\\n classification accuracy, despite using only a small 256-neuron SNN classifier, a low equivalent spike encoding resolution of 3-5 bits, and a sub-Nyquist 2.2kevent/s population spiking rate, a state-of-the-art power consumption of 12.33nW per-taxel, and 75\\n<inline-formula><tex-math>$\\\\mu$</tex-math></inline-formula>\\nW-5mW for the entire chip is obtained. Finally, a comparison of the texture classification accuracies between two on-chip spike encoder outputs shows that the proposed neuromorphic level-crossing sampling (N-LCS) architecture with a decaying threshold outperforms the conventional bipolar level-crossing sampling (LCS) architecture with fixed threshold.\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":\"18 6\",\"pages\":\"1308-1320\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10497167/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10497167/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种采用0.18$\mu$m CMOS技术的电子皮肤(e-skin) taxel阵列读出芯片,实现了目前报道的最高空间分辨率200$\mu$m,与人类指尖相当。一个关键的创新是在芯片上集成了一个基于12美元× 16美元聚偏氟乙烯(PVDF)的压电传感器阵列,该传感器阵列具有单单元信号调理前端和峰值读出,并通过复杂感受场(CRFs)结合局部嵌入式神经形态一阶处理。实验结果表明,基于尖峰神经网络(SNN)的芯片对输入触觉刺激(如纹理和颤振频率)的时空尖峰输出进行分类,准确率分别高达97.1美元和99.2美元。应用于片上PVDF传感器的基于SNN的缩进周期分类实现了95.5%的分类准确率,尽管只使用了一个较小的256个神经元SNN分类器,3-5位的低等效尖峰编码分辨率,亚奈奎斯特2.2kevent/s的种群尖峰率,最先进的功耗为12.33nW / taxel,整个芯片的功耗为75$\mu$W-5mW。最后,对两个片上尖峰编码器输出的纹理分类精度进行了比较,结果表明,具有衰减阈值的神经形态交叉采样(N-LCS)结构优于具有固定阈值的传统双极交叉采样(LCS)结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Fingertip-Mimicking 12$\times$16 200 $\mu$m-Resolution e-Skin Taxel Readout Chip With Per-Taxel Spiking Readout and Embedded Receptive Field Processing
This paper presents an electronic skin ( e -skin) taxel array readout chip in 0.18 $\mu$ m CMOS technology, achieving the highest reported spatial resolution of 200 $\mu$ m, comparable to human fingertips. A key innovation is the integration on chip of a 12 $\times$ 16 polyvinylidene fluoride (PVDF)-based piezoelectric sensor array with per-taxel signal conditioning frontend and spiking readout combined with local embedded neuromorphic first-order processing through Complex Receptive Fields (CRFs). Experimental results show that Spiking Neural Network (SNN)-based classification of the chip's spatiotemporal spiking output for input tactile stimuli such as texture and flutter frequency achieves excellent accuracies up to 97.1 $\%$ and 99.2 $\%$ , respectively. SNN-based classification of the indentation period applied to the on-chip PVDF sensors achieved 95.5 $\%$ classification accuracy, despite using only a small 256-neuron SNN classifier, a low equivalent spike encoding resolution of 3-5 bits, and a sub-Nyquist 2.2kevent/s population spiking rate, a state-of-the-art power consumption of 12.33nW per-taxel, and 75 $\mu$ W-5mW for the entire chip is obtained. Finally, a comparison of the texture classification accuracies between two on-chip spike encoder outputs shows that the proposed neuromorphic level-crossing sampling (N-LCS) architecture with a decaying threshold outperforms the conventional bipolar level-crossing sampling (LCS) architecture with fixed threshold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Erratum to “Design of an Extreme Low Cutoff Frequency Highpass Frontend for CMOS ISFET via Direct Tunneling Principle” IEEE Transactions on Biomedical Circuits and Systems Publication Information IEEE Circuits and Systems Society Information Guest Editorial: Ultralow-Power Technologies for Edge Computing in Human-Machine Interface Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1