综合右删失和长度偏右删失故障时间数据的生存函数 NPMLE:特性与应用

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-04-09 DOI:10.1515/ijb-2023-0121
James H. McVittie, David B. Wolfson, David A. Stephens
{"title":"综合右删失和长度偏右删失故障时间数据的生存函数 NPMLE:特性与应用","authors":"James H. McVittie, David B. Wolfson, David A. Stephens","doi":"10.1515/ijb-2023-0121","DOIUrl":null,"url":null,"abstract":"Many cohort studies in survival analysis have imbedded in them subcohorts consisting of incident cases and prevalent cases. Instead of analysing the data from the incident and prevalent cohorts alone, there are surely advantages to combining the data from these two subcohorts. In this paper, we discuss a survival function nonparametric maximum likelihood estimator (NPMLE) using both length-biased right-censored prevalent cohort data and right-censored incident cohort data. We establish the asymptotic properties of the survival function NPMLE and utilize the NPMLE to estimate the distribution for time spent in a Montreal area hospital.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The survival function NPMLE for combined right-censored and length-biased right-censored failure time data: properties and applications\",\"authors\":\"James H. McVittie, David B. Wolfson, David A. Stephens\",\"doi\":\"10.1515/ijb-2023-0121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many cohort studies in survival analysis have imbedded in them subcohorts consisting of incident cases and prevalent cases. Instead of analysing the data from the incident and prevalent cohorts alone, there are surely advantages to combining the data from these two subcohorts. In this paper, we discuss a survival function nonparametric maximum likelihood estimator (NPMLE) using both length-biased right-censored prevalent cohort data and right-censored incident cohort data. We establish the asymptotic properties of the survival function NPMLE and utilize the NPMLE to estimate the distribution for time spent in a Montreal area hospital.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2023-0121\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2023-0121","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在生存分析中,许多队列研究都包含了由事故病例和流行病例组成的子队列。与单独分析事件队列和流行队列的数据相比,将这两个子队列的数据结合起来肯定有其优势。在本文中,我们讨论了使用长度偏右删失流行队列数据和右删失事件队列数据的生存函数非参数极大似然估计法(NPMLE)。我们建立了生存函数 NPMLE 的渐近特性,并利用 NPMLE 估算了在蒙特利尔地区医院花费时间的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The survival function NPMLE for combined right-censored and length-biased right-censored failure time data: properties and applications
Many cohort studies in survival analysis have imbedded in them subcohorts consisting of incident cases and prevalent cases. Instead of analysing the data from the incident and prevalent cohorts alone, there are surely advantages to combining the data from these two subcohorts. In this paper, we discuss a survival function nonparametric maximum likelihood estimator (NPMLE) using both length-biased right-censored prevalent cohort data and right-censored incident cohort data. We establish the asymptotic properties of the survival function NPMLE and utilize the NPMLE to estimate the distribution for time spent in a Montreal area hospital.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1