{"title":"利用高光谱图像对 90 个水稻种子品种进行高精度分类的集合深度学习","authors":"AmirMasoud Taheri, Hossein Ebrahimnezhad, Mohammadhossein Sedaaghi","doi":"10.1007/s12652-024-04782-2","DOIUrl":null,"url":null,"abstract":"<p>To develop rice varieties with better nutritional qualities, it is important to classify rice seeds accurately. Hyperspectral imaging can be used to extract spectral information from rice seeds, which can then be used to classify them into different varieties. The challenges of precise classification increase when there are many classes and few training samples. In this paper, we present a novel method for high-precision Hyperspectral Image (HSI) classification of 90 different classes of rice seeds using ensemble deep learning. Our method first employs band selection techniques to select the optimal hyperspectral bands for rice seed classification. Then, a deep neural network is trained with the selected hyperspectral and RGB data from rice seed images to obtain different models for different bands. Finally, an ensemble of deep learning models is employed to classify rice seed images and improve classification accuracy. The proposed method achieves an overall precision ranging from 92.73 to 96.17% despite a large number of classes and low data samples for each class and with only 15 selected hyperspectral bands. This precision is significantly higher than the state-of-the-art classical machine learning methods like random forest, confirming the effectiveness of the proposed method in classifying hyperspectral images of rice seeds.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ensemble deep learning for high-precision classification of 90 rice seed varieties from hyperspectral images\",\"authors\":\"AmirMasoud Taheri, Hossein Ebrahimnezhad, Mohammadhossein Sedaaghi\",\"doi\":\"10.1007/s12652-024-04782-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To develop rice varieties with better nutritional qualities, it is important to classify rice seeds accurately. Hyperspectral imaging can be used to extract spectral information from rice seeds, which can then be used to classify them into different varieties. The challenges of precise classification increase when there are many classes and few training samples. In this paper, we present a novel method for high-precision Hyperspectral Image (HSI) classification of 90 different classes of rice seeds using ensemble deep learning. Our method first employs band selection techniques to select the optimal hyperspectral bands for rice seed classification. Then, a deep neural network is trained with the selected hyperspectral and RGB data from rice seed images to obtain different models for different bands. Finally, an ensemble of deep learning models is employed to classify rice seed images and improve classification accuracy. The proposed method achieves an overall precision ranging from 92.73 to 96.17% despite a large number of classes and low data samples for each class and with only 15 selected hyperspectral bands. This precision is significantly higher than the state-of-the-art classical machine learning methods like random forest, confirming the effectiveness of the proposed method in classifying hyperspectral images of rice seeds.</p>\",\"PeriodicalId\":14959,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Humanized Computing\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Humanized Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12652-024-04782-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Humanized Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12652-024-04782-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Ensemble deep learning for high-precision classification of 90 rice seed varieties from hyperspectral images
To develop rice varieties with better nutritional qualities, it is important to classify rice seeds accurately. Hyperspectral imaging can be used to extract spectral information from rice seeds, which can then be used to classify them into different varieties. The challenges of precise classification increase when there are many classes and few training samples. In this paper, we present a novel method for high-precision Hyperspectral Image (HSI) classification of 90 different classes of rice seeds using ensemble deep learning. Our method first employs band selection techniques to select the optimal hyperspectral bands for rice seed classification. Then, a deep neural network is trained with the selected hyperspectral and RGB data from rice seed images to obtain different models for different bands. Finally, an ensemble of deep learning models is employed to classify rice seed images and improve classification accuracy. The proposed method achieves an overall precision ranging from 92.73 to 96.17% despite a large number of classes and low data samples for each class and with only 15 selected hyperspectral bands. This precision is significantly higher than the state-of-the-art classical machine learning methods like random forest, confirming the effectiveness of the proposed method in classifying hyperspectral images of rice seeds.
期刊介绍:
The purpose of JAIHC is to provide a high profile, leading edge forum for academics, industrial professionals, educators and policy makers involved in the field to contribute, to disseminate the most innovative researches and developments of all aspects of ambient intelligence and humanized computing, such as intelligent/smart objects, environments/spaces, and systems. The journal discusses various technical, safety, personal, social, physical, political, artistic and economic issues. The research topics covered by the journal are (but not limited to):
Pervasive/Ubiquitous Computing and Applications
Cognitive wireless sensor network
Embedded Systems and Software
Mobile Computing and Wireless Communications
Next Generation Multimedia Systems
Security, Privacy and Trust
Service and Semantic Computing
Advanced Networking Architectures
Dependable, Reliable and Autonomic Computing
Embedded Smart Agents
Context awareness, social sensing and inference
Multi modal interaction design
Ergonomics and product prototyping
Intelligent and self-organizing transportation networks & services
Healthcare Systems
Virtual Humans & Virtual Worlds
Wearables sensors and actuators