Arman Seifallahi Teymourlouei, Seyed Morteza Naghib, M. R. Mozafari
{"title":"用于药物输送和组织工程的刺激响应型石墨烯-多糖纳米复合材料","authors":"Arman Seifallahi Teymourlouei, Seyed Morteza Naghib, M. R. Mozafari","doi":"10.2174/0115701794298435240324175513","DOIUrl":null,"url":null,"abstract":":: Natural polysaccharide-based nanoparticles are known for their non-toxic nature and diverse medical applications. Graphene oxide (GO) nanoparticles show potential in cancer treat-ment due to their ability to target medication delivery and influence ROS generation. These nanocomposites are versatile in gene transport, therapy, and photodynamic therapy, especially when surface-modified. Proper dispersion and functionalization of GO in polymer matrices are crucial, with examples like hyaluronic acid-functionalized GO offering versatile platforms for cancer drug administration. The potential of graphene oxide extends to cancer phototherapy, electronic nanowires, hydrogels, antibacterial nanocomposites, and environmental applications. When activated by polysaccharides, graphene-based nanocomposites exhibit anti-inflammatory and anticancer properties, making them valuable across various industries, including water treat-ment.","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":"203 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stimuli-responsive Graphene-Polysaccharide Nanocomposites for Drug Delivery and Tissue Engineering\",\"authors\":\"Arman Seifallahi Teymourlouei, Seyed Morteza Naghib, M. R. Mozafari\",\"doi\":\"10.2174/0115701794298435240324175513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\":: Natural polysaccharide-based nanoparticles are known for their non-toxic nature and diverse medical applications. Graphene oxide (GO) nanoparticles show potential in cancer treat-ment due to their ability to target medication delivery and influence ROS generation. These nanocomposites are versatile in gene transport, therapy, and photodynamic therapy, especially when surface-modified. Proper dispersion and functionalization of GO in polymer matrices are crucial, with examples like hyaluronic acid-functionalized GO offering versatile platforms for cancer drug administration. The potential of graphene oxide extends to cancer phototherapy, electronic nanowires, hydrogels, antibacterial nanocomposites, and environmental applications. When activated by polysaccharides, graphene-based nanocomposites exhibit anti-inflammatory and anticancer properties, making them valuable across various industries, including water treat-ment.\",\"PeriodicalId\":11101,\"journal\":{\"name\":\"Current organic synthesis\",\"volume\":\"203 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current organic synthesis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/0115701794298435240324175513\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current organic synthesis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115701794298435240324175513","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Stimuli-responsive Graphene-Polysaccharide Nanocomposites for Drug Delivery and Tissue Engineering
:: Natural polysaccharide-based nanoparticles are known for their non-toxic nature and diverse medical applications. Graphene oxide (GO) nanoparticles show potential in cancer treat-ment due to their ability to target medication delivery and influence ROS generation. These nanocomposites are versatile in gene transport, therapy, and photodynamic therapy, especially when surface-modified. Proper dispersion and functionalization of GO in polymer matrices are crucial, with examples like hyaluronic acid-functionalized GO offering versatile platforms for cancer drug administration. The potential of graphene oxide extends to cancer phototherapy, electronic nanowires, hydrogels, antibacterial nanocomposites, and environmental applications. When activated by polysaccharides, graphene-based nanocomposites exhibit anti-inflammatory and anticancer properties, making them valuable across various industries, including water treat-ment.
期刊介绍:
Current Organic Synthesis publishes in-depth reviews, original research articles and letter/short communications on all areas of synthetic organic chemistry i.e. asymmetric synthesis, organometallic chemistry, novel synthetic approaches to complex organic molecules, carbohydrates, polymers, protein chemistry, DNA chemistry, supramolecular chemistry, molecular recognition and new synthetic methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by experts who are internationally known for their eminent research contributions. The journal is essential reading to all synthetic organic chemists. Current Organic Synthesis should prove to be of great interest to synthetic chemists in academia and industry who wish to keep abreast with recent developments in key fields of organic synthesis.