Youngsik Song, Nafis Mustakim, Mayank Pandey, Sang-Woo Seo
{"title":"通过光热驱动大孔硅膜中的 pNIPAAm 水凝胶刷实现局部流量控制","authors":"Youngsik Song, Nafis Mustakim, Mayank Pandey, Sang-Woo Seo","doi":"10.1007/s10404-024-02726-y","DOIUrl":null,"url":null,"abstract":"<div><p>We present the control of liquid flow through arrayed micron-sized pores in a macroporous silicon membrane. The pores are coated with about 150 nm polymer N-isopropylacrylamide (pNIPAAm) hydrogel brushes and 200 nm polypyrrole layer, which works as photothermal actuator. The size of pore openings is controlled by utilizing the swelling and de-swelling behavior of temperature-sensitive pNIPAAm brushes, and the temperature on pNIPAAm brushes is changed by 815 nm near infra-red (NIR) illumination to polypyrrole photothermal element layer. The dimension change of the pore openings is investigated by observing the transmitted light and fluorescence signal intensity through the pores in the membrane while changing the ambient temperature. It has shown that the intensity of transmitted light can be controlled by adjusting the ambient temperature across the low critical solution temperature (LCST) of the hydrogel brushes. The localized control of liquid flow through the pores is demonstrated by the diffusion of fluorescein dye from the bottom of the membrane to the surface of the membrane using pulsed NIR light illumination. Fast dynamic response of fluorescein dye diffusion upon the illumination of NIR light suggests that the presented photothermal actuation approach could be applied to diverse biomedical applications such as a localized drug release system.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localized flow control by photothermal actuation of pNIPAAm hydrogel brushes in a macroporous silicon membrane\",\"authors\":\"Youngsik Song, Nafis Mustakim, Mayank Pandey, Sang-Woo Seo\",\"doi\":\"10.1007/s10404-024-02726-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present the control of liquid flow through arrayed micron-sized pores in a macroporous silicon membrane. The pores are coated with about 150 nm polymer N-isopropylacrylamide (pNIPAAm) hydrogel brushes and 200 nm polypyrrole layer, which works as photothermal actuator. The size of pore openings is controlled by utilizing the swelling and de-swelling behavior of temperature-sensitive pNIPAAm brushes, and the temperature on pNIPAAm brushes is changed by 815 nm near infra-red (NIR) illumination to polypyrrole photothermal element layer. The dimension change of the pore openings is investigated by observing the transmitted light and fluorescence signal intensity through the pores in the membrane while changing the ambient temperature. It has shown that the intensity of transmitted light can be controlled by adjusting the ambient temperature across the low critical solution temperature (LCST) of the hydrogel brushes. The localized control of liquid flow through the pores is demonstrated by the diffusion of fluorescein dye from the bottom of the membrane to the surface of the membrane using pulsed NIR light illumination. Fast dynamic response of fluorescein dye diffusion upon the illumination of NIR light suggests that the presented photothermal actuation approach could be applied to diverse biomedical applications such as a localized drug release system.</p></div>\",\"PeriodicalId\":706,\"journal\":{\"name\":\"Microfluidics and Nanofluidics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microfluidics and Nanofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10404-024-02726-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-024-02726-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Localized flow control by photothermal actuation of pNIPAAm hydrogel brushes in a macroporous silicon membrane
We present the control of liquid flow through arrayed micron-sized pores in a macroporous silicon membrane. The pores are coated with about 150 nm polymer N-isopropylacrylamide (pNIPAAm) hydrogel brushes and 200 nm polypyrrole layer, which works as photothermal actuator. The size of pore openings is controlled by utilizing the swelling and de-swelling behavior of temperature-sensitive pNIPAAm brushes, and the temperature on pNIPAAm brushes is changed by 815 nm near infra-red (NIR) illumination to polypyrrole photothermal element layer. The dimension change of the pore openings is investigated by observing the transmitted light and fluorescence signal intensity through the pores in the membrane while changing the ambient temperature. It has shown that the intensity of transmitted light can be controlled by adjusting the ambient temperature across the low critical solution temperature (LCST) of the hydrogel brushes. The localized control of liquid flow through the pores is demonstrated by the diffusion of fluorescein dye from the bottom of the membrane to the surface of the membrane using pulsed NIR light illumination. Fast dynamic response of fluorescein dye diffusion upon the illumination of NIR light suggests that the presented photothermal actuation approach could be applied to diverse biomedical applications such as a localized drug release system.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).