{"title":"美国佛罗里达州卡尔顿湖初级生产者变化与水文连通性和人类影响有关的古气候学证据","authors":"Troy L. Clift, Matthew N. Waters","doi":"10.1007/s10933-024-00318-y","DOIUrl":null,"url":null,"abstract":"<p>Hypereutrophic conditions in lake ecosystems are generally associated with nutrient inputs from surrounding terrestrial landscapes. However, some systems can receive primary nutrient inputs through hydrologic connections such as rivers or canals. Lake Carlton, Florida, USA is a small, shallow, polymictic lake that ends a hydrologically connected string of lacustrine systems with hypereutrophic lakes Beauclair and Apopka. Lake Beauclair and Lake Apopka were connected hydrologically when a system of canals was constructed beginning in 1893 CE. These lakes have maintained hypereutrophic conditions despite extensive management to reduce nutrient inputs. Here, we collected a sediment core from Lake Carlton to accomplish two primary research objectives: 1) reconstruct the nutrient input for Lake Carlton throughout the last ~ 150 years to conduct source assessment, and 2) link primary producer changes with management actions between lakes Apopka, Beauclair, and Carlton. Paleolimnological tools were applied to a 165-cm sediment core and analyzed for bulk density, organic matter content, nutrients (C, N, P), photosynthetic pigments, and total microcystins. Sediments were dated using <sup>210</sup>Pb and results indicate that the core represents over 150 years of sediment accumulation. Sedimentary nutrient concentrations show that the primary driver of nutrient inputs resulted from canal construction, beginning in 1893 CE, which corresponded to increased nutrient deposition. Photosynthetic pigment data indicate dramatic increases in most primary producer groups coinciding with the hydrologic modification. However, around ~ 1970 CE, primary producer communities shifted from diatom dominance to cyanobacterial dominance, which appeared to be linked to internal nutrient dynamics and competition among phytoplankters within the lake ecosystem. Cyanotoxin production records show a significant lag between cyanobacterial dominance and peak cyanotoxin production with toxins increasing in the last 30 years. These data demonstrate that local nutrient inputs do not govern all phytoplankton dynamics in shallow lake systems but must be interpreted considering hydrologic alterations and management practices.</p>","PeriodicalId":16658,"journal":{"name":"Journal of Paleolimnology","volume":"49 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Paleolimnological evidence for primary producer change linked to hydrologic connectivity and human impacts in Lake Carlton, Florida, USA\",\"authors\":\"Troy L. Clift, Matthew N. Waters\",\"doi\":\"10.1007/s10933-024-00318-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hypereutrophic conditions in lake ecosystems are generally associated with nutrient inputs from surrounding terrestrial landscapes. However, some systems can receive primary nutrient inputs through hydrologic connections such as rivers or canals. Lake Carlton, Florida, USA is a small, shallow, polymictic lake that ends a hydrologically connected string of lacustrine systems with hypereutrophic lakes Beauclair and Apopka. Lake Beauclair and Lake Apopka were connected hydrologically when a system of canals was constructed beginning in 1893 CE. These lakes have maintained hypereutrophic conditions despite extensive management to reduce nutrient inputs. Here, we collected a sediment core from Lake Carlton to accomplish two primary research objectives: 1) reconstruct the nutrient input for Lake Carlton throughout the last ~ 150 years to conduct source assessment, and 2) link primary producer changes with management actions between lakes Apopka, Beauclair, and Carlton. Paleolimnological tools were applied to a 165-cm sediment core and analyzed for bulk density, organic matter content, nutrients (C, N, P), photosynthetic pigments, and total microcystins. Sediments were dated using <sup>210</sup>Pb and results indicate that the core represents over 150 years of sediment accumulation. Sedimentary nutrient concentrations show that the primary driver of nutrient inputs resulted from canal construction, beginning in 1893 CE, which corresponded to increased nutrient deposition. Photosynthetic pigment data indicate dramatic increases in most primary producer groups coinciding with the hydrologic modification. However, around ~ 1970 CE, primary producer communities shifted from diatom dominance to cyanobacterial dominance, which appeared to be linked to internal nutrient dynamics and competition among phytoplankters within the lake ecosystem. Cyanotoxin production records show a significant lag between cyanobacterial dominance and peak cyanotoxin production with toxins increasing in the last 30 years. These data demonstrate that local nutrient inputs do not govern all phytoplankton dynamics in shallow lake systems but must be interpreted considering hydrologic alterations and management practices.</p>\",\"PeriodicalId\":16658,\"journal\":{\"name\":\"Journal of Paleolimnology\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Paleolimnology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10933-024-00318-y\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Paleolimnology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10933-024-00318-y","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Paleolimnological evidence for primary producer change linked to hydrologic connectivity and human impacts in Lake Carlton, Florida, USA
Hypereutrophic conditions in lake ecosystems are generally associated with nutrient inputs from surrounding terrestrial landscapes. However, some systems can receive primary nutrient inputs through hydrologic connections such as rivers or canals. Lake Carlton, Florida, USA is a small, shallow, polymictic lake that ends a hydrologically connected string of lacustrine systems with hypereutrophic lakes Beauclair and Apopka. Lake Beauclair and Lake Apopka were connected hydrologically when a system of canals was constructed beginning in 1893 CE. These lakes have maintained hypereutrophic conditions despite extensive management to reduce nutrient inputs. Here, we collected a sediment core from Lake Carlton to accomplish two primary research objectives: 1) reconstruct the nutrient input for Lake Carlton throughout the last ~ 150 years to conduct source assessment, and 2) link primary producer changes with management actions between lakes Apopka, Beauclair, and Carlton. Paleolimnological tools were applied to a 165-cm sediment core and analyzed for bulk density, organic matter content, nutrients (C, N, P), photosynthetic pigments, and total microcystins. Sediments were dated using 210Pb and results indicate that the core represents over 150 years of sediment accumulation. Sedimentary nutrient concentrations show that the primary driver of nutrient inputs resulted from canal construction, beginning in 1893 CE, which corresponded to increased nutrient deposition. Photosynthetic pigment data indicate dramatic increases in most primary producer groups coinciding with the hydrologic modification. However, around ~ 1970 CE, primary producer communities shifted from diatom dominance to cyanobacterial dominance, which appeared to be linked to internal nutrient dynamics and competition among phytoplankters within the lake ecosystem. Cyanotoxin production records show a significant lag between cyanobacterial dominance and peak cyanotoxin production with toxins increasing in the last 30 years. These data demonstrate that local nutrient inputs do not govern all phytoplankton dynamics in shallow lake systems but must be interpreted considering hydrologic alterations and management practices.
期刊介绍:
The realization that a historical perspective is often useful, if not essential, to the understanding of most limnological processes has resulted in the recent surge of interest in paleolimnology. The main aim of the Journal of Paleolimnology is the provision of a vehicle for the rapid dissemination of original scientific work dealing with the reconstruction of lake histories. Although the majority of papers deal with lakes, paleoenvironmental studies of river, wetland, peatland and estuary systems are also eligible for publication.
The Journal of Paleolimnology, like the subject itself, is multidisciplinary in nature, and papers are published that are concerned with all aspects (e.g. biological, chemical, physical, geological, etc.) of the reconstruction and interpretation of lake histories. Both applied and more theoretical papers are equally encouraged. The Journal of Paleolimnology will continue to be a major repository for papers dealing with climatic change, as well as other pressing topics, such as global environmental change, lake acidification, eutrophication, long-term monitoring, and other aspects of lake ontogeny. Taxonomic and methodological papers are also acceptable provided they are of relatively broad interest. New equipment designs are frequently featured. In addition to original data and ideas, the Journal of Paleolimnology also publishes review articles, commentaries and program announcements. A relevant Book Review Section is also featured.