双层代脑在各种爆炸加载条件下的反应

IF 1.7 4区 工程技术 Q3 MECHANICS Shock Waves Pub Date : 2024-04-05 DOI:10.1007/s00193-024-01158-5
C. Norris, B. Arnold, J. Wilkes, C. Squibb, A. J. Nelson, H. Schwenker, J. Mesisca, A. Vossenberg, P. J. VandeVord
{"title":"双层代脑在各种爆炸加载条件下的反应","authors":"C. Norris,&nbsp;B. Arnold,&nbsp;J. Wilkes,&nbsp;C. Squibb,&nbsp;A. J. Nelson,&nbsp;H. Schwenker,&nbsp;J. Mesisca,&nbsp;A. Vossenberg,&nbsp;P. J. VandeVord","doi":"10.1007/s00193-024-01158-5","DOIUrl":null,"url":null,"abstract":"<div><p>Variations in the experimental constraints applied within blast simulations can result in dramatically different measured biomechanical responses. Ultimately, this limits the comparison of data between research groups and leads to further inquisitions about the “correct” biomechanics experienced in blast environments. A novel bilayer surrogate brain was exposed to blast waves generated from advanced blast simulators (ABSs) where detonation source, boundary conditions, and ABS geometry were varied. The surrogate was comprised of Sylgard 527 (1:1) as a gray matter simulant and Sylgard 527 (1:1.2) as a white matter simulant. The intracranial pressure response of this surrogate brain was measured in the frontal region under primary blast loading while suspended in a polyurethane spherical shell with 5 mm thickness and filled with water to represent the cerebrospinal fluid. Outcomes of this work discuss considerations for future experimental designs and aim to address sources of variability confounding interpretation of biomechanical responses.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 4","pages":"357 - 367"},"PeriodicalIF":1.7000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-024-01158-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Bilayer surrogate brain response under various blast loading conditions\",\"authors\":\"C. Norris,&nbsp;B. Arnold,&nbsp;J. Wilkes,&nbsp;C. Squibb,&nbsp;A. J. Nelson,&nbsp;H. Schwenker,&nbsp;J. Mesisca,&nbsp;A. Vossenberg,&nbsp;P. J. VandeVord\",\"doi\":\"10.1007/s00193-024-01158-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Variations in the experimental constraints applied within blast simulations can result in dramatically different measured biomechanical responses. Ultimately, this limits the comparison of data between research groups and leads to further inquisitions about the “correct” biomechanics experienced in blast environments. A novel bilayer surrogate brain was exposed to blast waves generated from advanced blast simulators (ABSs) where detonation source, boundary conditions, and ABS geometry were varied. The surrogate was comprised of Sylgard 527 (1:1) as a gray matter simulant and Sylgard 527 (1:1.2) as a white matter simulant. The intracranial pressure response of this surrogate brain was measured in the frontal region under primary blast loading while suspended in a polyurethane spherical shell with 5 mm thickness and filled with water to represent the cerebrospinal fluid. Outcomes of this work discuss considerations for future experimental designs and aim to address sources of variability confounding interpretation of biomechanical responses.</p></div>\",\"PeriodicalId\":775,\"journal\":{\"name\":\"Shock Waves\",\"volume\":\"34 4\",\"pages\":\"357 - 367\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00193-024-01158-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shock Waves\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00193-024-01158-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-024-01158-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在爆炸模拟中应用的实验约束条件不同,会导致测量的生物力学反应大相径庭。最终,这会限制研究小组之间的数据比较,并导致对爆炸环境中 "正确 "生物力学的进一步探究。一种新型双层代用脑暴露于由高级爆炸模拟器(ABS)产生的爆炸波中,爆炸源、边界条件和 ABS 的几何形状各不相同。代理脑由作为灰质模拟物的 Sylgard 527(1:1)和作为白质模拟物的 Sylgard 527(1:1.2)组成。在一次爆炸加载下,在额叶区域测量了这种代用脑的颅内压响应,当时代用脑悬浮在一个 5 毫米厚的聚氨酯球形外壳中,外壳中充满了代表脑脊液的水。这项工作的成果讨论了未来实验设计的注意事项,旨在解决干扰生物力学响应解释的变异性来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bilayer surrogate brain response under various blast loading conditions

Variations in the experimental constraints applied within blast simulations can result in dramatically different measured biomechanical responses. Ultimately, this limits the comparison of data between research groups and leads to further inquisitions about the “correct” biomechanics experienced in blast environments. A novel bilayer surrogate brain was exposed to blast waves generated from advanced blast simulators (ABSs) where detonation source, boundary conditions, and ABS geometry were varied. The surrogate was comprised of Sylgard 527 (1:1) as a gray matter simulant and Sylgard 527 (1:1.2) as a white matter simulant. The intracranial pressure response of this surrogate brain was measured in the frontal region under primary blast loading while suspended in a polyurethane spherical shell with 5 mm thickness and filled with water to represent the cerebrospinal fluid. Outcomes of this work discuss considerations for future experimental designs and aim to address sources of variability confounding interpretation of biomechanical responses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Shock Waves
Shock Waves 物理-力学
CiteScore
4.10
自引率
9.10%
发文量
41
审稿时长
17.4 months
期刊介绍: Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization. The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine. Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community. The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.
期刊最新文献
An experimental and kinetic modeling study of the autoignition of syngas mixtures behind reflected shock waves Asymmetry of imploding detonations in thin channels Thematic issue on blast exposure research in military training environments Optical measurement of state variables associated with blast wave evolution Influence of fuel inhomogeneity on detonation wave propagation in a rotating detonation combustor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1