多孔介质中拉伸片上奥尔德罗伊德-B 和杰弗里-威廉森三元混合纳米流体的传热与传质

IF 2.5 4区 工程技术 Q2 ENGINEERING, MECHANICAL Journal of Porous Media Pub Date : 2024-04-01 DOI:10.1615/jpormedia.2024052406
Ahmed M. Rashad, Hossam Nabwey, Waqar A. Khan, Zeinab Abdelrahman, shereen abdelnaiem, Miad Abu Hawsah
{"title":"多孔介质中拉伸片上奥尔德罗伊德-B 和杰弗里-威廉森三元混合纳米流体的传热与传质","authors":"Ahmed M. Rashad, Hossam Nabwey, Waqar A. Khan, Zeinab Abdelrahman, shereen abdelnaiem, Miad Abu Hawsah","doi":"10.1615/jpormedia.2024052406","DOIUrl":null,"url":null,"abstract":"This study investigates the flow of non-Newtonian Oldroyd-B and Jeffrey-Williamson ternary-hybrid nanofluids along a stretching sheet through a porous medium in the presence of a magnetic field. The nanofluid is composed of titanium oxide, aluminum oxide, and silver dispersed in water. The effects of local thermal non-equilibrium conditions are also considered. The mathematical model for this physical problem consists of a set of nonlinear partial differential equations with boundary conditions, which are solved numerically using MATLAB. The study analyzes the heat transfer properties and flow features under different flow parameters, and the results are presented in tabular form for the Nusselt number of the ternary-hybrid nanofluid and solid, the skin friction coefficient, and the Sherwood number. The numerical examination illustrates the impact of various governing factors on velocity, temperature, and concentration, and the findings are discussed in detail. It is concluded that Jeffrey-Williamson fluid exhibits lower skin friction, Nusselt, and Sherwood numbers compared to Oldroyd-B fluid, whereas the maximum value observed for ternary nanofluids. On the other hand, the base fluid shows the lowest skin friction, Nusselt, and Sherwood numbers among all types of nanofluids.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":"23 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat And Mass Transfer of Oldroyd-B And Jeffery-Williamson Ternary-Hybrid Nanofluids Over A Stretching Sheet In A Porous Medium\",\"authors\":\"Ahmed M. Rashad, Hossam Nabwey, Waqar A. Khan, Zeinab Abdelrahman, shereen abdelnaiem, Miad Abu Hawsah\",\"doi\":\"10.1615/jpormedia.2024052406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the flow of non-Newtonian Oldroyd-B and Jeffrey-Williamson ternary-hybrid nanofluids along a stretching sheet through a porous medium in the presence of a magnetic field. The nanofluid is composed of titanium oxide, aluminum oxide, and silver dispersed in water. The effects of local thermal non-equilibrium conditions are also considered. The mathematical model for this physical problem consists of a set of nonlinear partial differential equations with boundary conditions, which are solved numerically using MATLAB. The study analyzes the heat transfer properties and flow features under different flow parameters, and the results are presented in tabular form for the Nusselt number of the ternary-hybrid nanofluid and solid, the skin friction coefficient, and the Sherwood number. The numerical examination illustrates the impact of various governing factors on velocity, temperature, and concentration, and the findings are discussed in detail. It is concluded that Jeffrey-Williamson fluid exhibits lower skin friction, Nusselt, and Sherwood numbers compared to Oldroyd-B fluid, whereas the maximum value observed for ternary nanofluids. On the other hand, the base fluid shows the lowest skin friction, Nusselt, and Sherwood numbers among all types of nanofluids.\",\"PeriodicalId\":50082,\"journal\":{\"name\":\"Journal of Porous Media\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/jpormedia.2024052406\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Media","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/jpormedia.2024052406","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了非牛顿奥尔德罗伊德-B 和杰弗里-威廉森三元混合纳米流体在磁场作用下沿拉伸片流经多孔介质的流动情况。纳米流体由分散在水中的氧化钛、氧化铝和银组成。还考虑了局部热非均衡条件的影响。该物理问题的数学模型由一组带边界条件的非线性偏微分方程组成,并使用 MATLAB 进行数值求解。研究分析了不同流动参数下的传热特性和流动特征,并以表格形式给出了三元混合纳米流体和固体的努塞尔特数、表皮摩擦系数和舍伍德数的结果。数值研究说明了各种调节因素对速度、温度和浓度的影响,并对研究结果进行了详细讨论。结论是,与 Oldroyd-B 流体相比,Jeffrey-Williamson 流体的表皮摩擦系数、努塞尔特数和舍伍德数较低,而三元纳米流体的表皮摩擦系数、努塞尔特数和舍伍德数达到最大值。另一方面,在所有类型的纳米流体中,基础流体的皮肤摩擦系数、努塞尔特数和舍伍德数最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heat And Mass Transfer of Oldroyd-B And Jeffery-Williamson Ternary-Hybrid Nanofluids Over A Stretching Sheet In A Porous Medium
This study investigates the flow of non-Newtonian Oldroyd-B and Jeffrey-Williamson ternary-hybrid nanofluids along a stretching sheet through a porous medium in the presence of a magnetic field. The nanofluid is composed of titanium oxide, aluminum oxide, and silver dispersed in water. The effects of local thermal non-equilibrium conditions are also considered. The mathematical model for this physical problem consists of a set of nonlinear partial differential equations with boundary conditions, which are solved numerically using MATLAB. The study analyzes the heat transfer properties and flow features under different flow parameters, and the results are presented in tabular form for the Nusselt number of the ternary-hybrid nanofluid and solid, the skin friction coefficient, and the Sherwood number. The numerical examination illustrates the impact of various governing factors on velocity, temperature, and concentration, and the findings are discussed in detail. It is concluded that Jeffrey-Williamson fluid exhibits lower skin friction, Nusselt, and Sherwood numbers compared to Oldroyd-B fluid, whereas the maximum value observed for ternary nanofluids. On the other hand, the base fluid shows the lowest skin friction, Nusselt, and Sherwood numbers among all types of nanofluids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Porous Media
Journal of Porous Media 工程技术-工程:机械
CiteScore
3.50
自引率
8.70%
发文量
89
审稿时长
12.5 months
期刊介绍: The Journal of Porous Media publishes original full-length research articles (and technical notes) in a wide variety of areas related to porous media studies, such as mathematical modeling, numerical and experimental techniques, industrial and environmental heat and mass transfer, conduction, convection, radiation, particle transport and capillary effects, reactive flows, deformable porous media, biomedical applications, and mechanics of the porous substrate. Emphasis will be given to manuscripts that present novel findings pertinent to these areas. The journal will also consider publication of state-of-the-art reviews. Manuscripts applying known methods to previously solved problems or providing results in the absence of scientific motivation or application will not be accepted. Submitted articles should contribute to the understanding of specific scientific problems or to solution techniques that are useful in applications. Papers that link theory with computational practice to provide insight into the processes are welcome.
期刊最新文献
Multi‑scale Experimental Investigations on the Deterioration Mechanism of Sandstone after high-temperature treatment Geometric models for incorporating solid accumulation at the nodes of open-cell foams CONVECTIVE FLOW AND HEAT TRANSPORT OF CLAY NANOFLUID ACROSS A VERTICAL SURFACE IN A DARCY-BRINKMAN POROUS MEDIUM Heat Transfer Enhancement of Modified Sodium Acetate Trihydrate Composite Phase Change Material with Metal Foams An Advanced Nine-Point Scheme based on Finite Analysis in Two-Dimensional Numerical Reservoir Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1