量子信息论能为量子化学带来什么?

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL Faraday Discussions Pub Date : 2024-04-12 DOI:10.1039/d4fd00059e
Damiano Aliverti-Piuri, Kaustav Chatterjee, Lexin Ding, Ke Liao, Julia Liebert, Christian Schilling
{"title":"量子信息论能为量子化学带来什么?","authors":"Damiano Aliverti-Piuri, Kaustav Chatterjee, Lexin Ding, Ke Liao, Julia Liebert, Christian Schilling","doi":"10.1039/d4fd00059e","DOIUrl":null,"url":null,"abstract":"It is the ultimate goal of this work to foster synergy between quantum chemistry and the flourishing field of quantum information theory. For this, we first translate quantum information concepts such as entanglement and correlation into the context of quantum chemical systems. In particular, we establish two conceptually distinct perspectives on correlation leading to a notion of orbital and particle correlation. We then demonstrate that particle correlation equals orbital correlation minimized with respect to all orbital reference bases. Accordingly, particle correlation resembles the minimal, thus intrinsic, complexity of many-electron wavefunctions while orbital correlation quantifies their complexity relative to a basis. We illustrate these novel concepts of intrinsic and extrinsic correlation complexity with analytic and numerical examples, which also demonstrates the crucial link between the two correlation pictures. Our results provide theoretical justification for the long-favored natural orbitals for simplifying electronic structures, and open new pathways for developing more efficient approaches towards the electron correlation problem.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What can Quantum Information Theory Offer to Quantum Chemistry?\",\"authors\":\"Damiano Aliverti-Piuri, Kaustav Chatterjee, Lexin Ding, Ke Liao, Julia Liebert, Christian Schilling\",\"doi\":\"10.1039/d4fd00059e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is the ultimate goal of this work to foster synergy between quantum chemistry and the flourishing field of quantum information theory. For this, we first translate quantum information concepts such as entanglement and correlation into the context of quantum chemical systems. In particular, we establish two conceptually distinct perspectives on correlation leading to a notion of orbital and particle correlation. We then demonstrate that particle correlation equals orbital correlation minimized with respect to all orbital reference bases. Accordingly, particle correlation resembles the minimal, thus intrinsic, complexity of many-electron wavefunctions while orbital correlation quantifies their complexity relative to a basis. We illustrate these novel concepts of intrinsic and extrinsic correlation complexity with analytic and numerical examples, which also demonstrates the crucial link between the two correlation pictures. Our results provide theoretical justification for the long-favored natural orbitals for simplifying electronic structures, and open new pathways for developing more efficient approaches towards the electron correlation problem.\",\"PeriodicalId\":76,\"journal\":{\"name\":\"Faraday Discussions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Faraday Discussions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4fd00059e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00059e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的最终目标是促进量子化学与蓬勃发展的量子信息论领域之间的协同作用。为此,我们首先将纠缠和相关性等量子信息概念转换到量子化学系统中。特别是,我们建立了两个概念上截然不同的相关性视角,形成了轨道相关性和粒子相关性的概念。然后,我们证明粒子相关性等于相对于所有轨道参考基最小化的轨道相关性。因此,粒子相关性类似于多电子波函数的最小复杂性,即内在复杂性,而轨道相关性则量化了它们相对于某个基础的复杂性。我们用分析和数值示例来说明这些内在和外在相关复杂性的新概念,这也证明了两种相关图景之间的重要联系。我们的研究结果为长期以来用于简化电子结构的自然轨道提供了理论依据,并为开发更有效的方法来解决电子相关性问题开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
What can Quantum Information Theory Offer to Quantum Chemistry?
It is the ultimate goal of this work to foster synergy between quantum chemistry and the flourishing field of quantum information theory. For this, we first translate quantum information concepts such as entanglement and correlation into the context of quantum chemical systems. In particular, we establish two conceptually distinct perspectives on correlation leading to a notion of orbital and particle correlation. We then demonstrate that particle correlation equals orbital correlation minimized with respect to all orbital reference bases. Accordingly, particle correlation resembles the minimal, thus intrinsic, complexity of many-electron wavefunctions while orbital correlation quantifies their complexity relative to a basis. We illustrate these novel concepts of intrinsic and extrinsic correlation complexity with analytic and numerical examples, which also demonstrates the crucial link between the two correlation pictures. Our results provide theoretical justification for the long-favored natural orbitals for simplifying electronic structures, and open new pathways for developing more efficient approaches towards the electron correlation problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
期刊最新文献
Optical materials discovery and design via federated databases and machine learning Seeing nanoscale electrocatalytic reactions at individual MoS2 particles under an optical microscope: probing sub-mM oxygen reduction reaction Electrochemical Nucleation and Growth Kinetics: Insights from Single Particle Scanning Electrochemical Cell Microscopy Studies Single-molecule electrochemical imaging of 'split waves' in the electrocatalytic (EC') mechanism Advanced Algorithm for Step Detection in Single-Entity Electrochemistry: A Comparative Study of Wavelet Transforms and Convolutional Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1