Nawshad Farruque, Randy Goebel, Sudhakar Sivapalan, Osmar R. Zaïane
{"title":"从社交媒体文本中建立抑郁症状模型:一种 LLM 驱动的半监督学习方法","authors":"Nawshad Farruque, Randy Goebel, Sudhakar Sivapalan, Osmar R. Zaïane","doi":"10.1007/s10579-024-09720-4","DOIUrl":null,"url":null,"abstract":"<p>A fundamental component of user-level social media language based clinical depression modelling is depression symptoms detection (DSD). Unfortunately, there does not exist any DSD dataset that reflects both the clinical insights and the distribution of depression symptoms from the samples of self-disclosed depressed population. In our work, we describe a semi-supervised learning (SSL) framework which uses an initial supervised learning model that leverages (1) a state-of-the-art large mental health forum text pre-trained language model further fine-tuned on a clinician annotated DSD dataset, (2) a Zero-Shot learning model for DSD, and couples them together to harvest depression symptoms related samples from our large self-curated depressive tweets repository (DTR). Our clinician annotated dataset is the largest of its kind. Furthermore, DTR is created from the samples of tweets in self-disclosed depressed users Twitter timeline from two datasets, including one of the largest benchmark datasets for user-level depression detection from Twitter. This further helps preserve the depression symptoms distribution of self-disclosed tweets. Subsequently, we iteratively retrain our initial DSD model with the harvested data. We discuss the stopping criteria and limitations of this SSL process, and elaborate the underlying constructs which play a vital role in the overall SSL process. We show that we can produce a final dataset which is the largest of its kind. Furthermore, a DSD and a Depression Post Detection model trained on it achieves significantly better accuracy than their initial version.</p>","PeriodicalId":49927,"journal":{"name":"Language Resources and Evaluation","volume":"86 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Depression symptoms modelling from social media text: an LLM driven semi-supervised learning approach\",\"authors\":\"Nawshad Farruque, Randy Goebel, Sudhakar Sivapalan, Osmar R. Zaïane\",\"doi\":\"10.1007/s10579-024-09720-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A fundamental component of user-level social media language based clinical depression modelling is depression symptoms detection (DSD). Unfortunately, there does not exist any DSD dataset that reflects both the clinical insights and the distribution of depression symptoms from the samples of self-disclosed depressed population. In our work, we describe a semi-supervised learning (SSL) framework which uses an initial supervised learning model that leverages (1) a state-of-the-art large mental health forum text pre-trained language model further fine-tuned on a clinician annotated DSD dataset, (2) a Zero-Shot learning model for DSD, and couples them together to harvest depression symptoms related samples from our large self-curated depressive tweets repository (DTR). Our clinician annotated dataset is the largest of its kind. Furthermore, DTR is created from the samples of tweets in self-disclosed depressed users Twitter timeline from two datasets, including one of the largest benchmark datasets for user-level depression detection from Twitter. This further helps preserve the depression symptoms distribution of self-disclosed tweets. Subsequently, we iteratively retrain our initial DSD model with the harvested data. We discuss the stopping criteria and limitations of this SSL process, and elaborate the underlying constructs which play a vital role in the overall SSL process. We show that we can produce a final dataset which is the largest of its kind. Furthermore, a DSD and a Depression Post Detection model trained on it achieves significantly better accuracy than their initial version.</p>\",\"PeriodicalId\":49927,\"journal\":{\"name\":\"Language Resources and Evaluation\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Language Resources and Evaluation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10579-024-09720-4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Language Resources and Evaluation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10579-024-09720-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Depression symptoms modelling from social media text: an LLM driven semi-supervised learning approach
A fundamental component of user-level social media language based clinical depression modelling is depression symptoms detection (DSD). Unfortunately, there does not exist any DSD dataset that reflects both the clinical insights and the distribution of depression symptoms from the samples of self-disclosed depressed population. In our work, we describe a semi-supervised learning (SSL) framework which uses an initial supervised learning model that leverages (1) a state-of-the-art large mental health forum text pre-trained language model further fine-tuned on a clinician annotated DSD dataset, (2) a Zero-Shot learning model for DSD, and couples them together to harvest depression symptoms related samples from our large self-curated depressive tweets repository (DTR). Our clinician annotated dataset is the largest of its kind. Furthermore, DTR is created from the samples of tweets in self-disclosed depressed users Twitter timeline from two datasets, including one of the largest benchmark datasets for user-level depression detection from Twitter. This further helps preserve the depression symptoms distribution of self-disclosed tweets. Subsequently, we iteratively retrain our initial DSD model with the harvested data. We discuss the stopping criteria and limitations of this SSL process, and elaborate the underlying constructs which play a vital role in the overall SSL process. We show that we can produce a final dataset which is the largest of its kind. Furthermore, a DSD and a Depression Post Detection model trained on it achieves significantly better accuracy than their initial version.
期刊介绍:
Language Resources and Evaluation is the first publication devoted to the acquisition, creation, annotation, and use of language resources, together with methods for evaluation of resources, technologies, and applications.
Language resources include language data and descriptions in machine readable form used to assist and augment language processing applications, such as written or spoken corpora and lexica, multimodal resources, grammars, terminology or domain specific databases and dictionaries, ontologies, multimedia databases, etc., as well as basic software tools for their acquisition, preparation, annotation, management, customization, and use.
Evaluation of language resources concerns assessing the state-of-the-art for a given technology, comparing different approaches to a given problem, assessing the availability of resources and technologies for a given application, benchmarking, and assessing system usability and user satisfaction.