利用 SPICE 对分数电容器进行快速时域模拟

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Computational Electronics Pub Date : 2024-04-09 DOI:10.1007/s10825-024-02160-x
Marcus Wilson, Logan Cowie, Vance Farrow, Michael Cree, Jonathan Scott
{"title":"利用 SPICE 对分数电容器进行快速时域模拟","authors":"Marcus Wilson, Logan Cowie, Vance Farrow, Michael Cree, Jonathan Scott","doi":"10.1007/s10825-024-02160-x","DOIUrl":null,"url":null,"abstract":"<p>Fractional capacitors, commonly called constant-phase elements or CPEs, are used in modeling and control applications, for example, for rechargeable batteries. Unfortunately, they are not natively supported in the well-used circuit simulator SPICE. This manuscript presents and demonstrates a modeling approach that allows users to incorporate these elements in circuits and model the response in the time domain. The novelty is that we implement for the first time a particular configuration of RC elements in parallel in a Foster-type network with SPICE in order to simulate a constant-phase element across a defined frequency range. We demonstrate that the circuit produces the required impedance spectrum in the frequency domain, and shows a power-law voltage response to a step change in current in the time domain, consistent with theory, and is able to reproduce the experimental voltage response to a complicated current profile in the time domain. The error depends on the chosen frequency limits and the number of RC branches, in addition to very small SPICE numerical errors. We are able to define an optimum circuit description that minimizes error while maintaining a short computation time. The scientific value is that the work permits rapid and accurate evaluation of the response of CPEs in the time domain, faster than other methods, using open source tools.</p>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid time-domain simulation of fractional capacitors with SPICE\",\"authors\":\"Marcus Wilson, Logan Cowie, Vance Farrow, Michael Cree, Jonathan Scott\",\"doi\":\"10.1007/s10825-024-02160-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fractional capacitors, commonly called constant-phase elements or CPEs, are used in modeling and control applications, for example, for rechargeable batteries. Unfortunately, they are not natively supported in the well-used circuit simulator SPICE. This manuscript presents and demonstrates a modeling approach that allows users to incorporate these elements in circuits and model the response in the time domain. The novelty is that we implement for the first time a particular configuration of RC elements in parallel in a Foster-type network with SPICE in order to simulate a constant-phase element across a defined frequency range. We demonstrate that the circuit produces the required impedance spectrum in the frequency domain, and shows a power-law voltage response to a step change in current in the time domain, consistent with theory, and is able to reproduce the experimental voltage response to a complicated current profile in the time domain. The error depends on the chosen frequency limits and the number of RC branches, in addition to very small SPICE numerical errors. We are able to define an optimum circuit description that minimizes error while maintaining a short computation time. The scientific value is that the work permits rapid and accurate evaluation of the response of CPEs in the time domain, faster than other methods, using open source tools.</p>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10825-024-02160-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10825-024-02160-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

分数电容器通常称为恒相元件或 CPE,用于建模和控制应用,例如充电电池。遗憾的是,常用的电路模拟器 SPICE 并不支持这些元件。本手稿介绍并演示了一种建模方法,允许用户在电路中加入这些元件,并在时域中建立响应模型。新颖之处在于,我们首次在 SPICE 中实现了福斯特型网络中并联 RC 元件的特定配置,以便在定义的频率范围内模拟恒相元件。我们证明,该电路在频域中产生了所需的阻抗谱,在时域中显示了对电流阶跃变化的幂律电压响应,与理论相一致,并且能够在时域中再现对复杂电流曲线的实验电压响应。除了极小的 SPICE 数值误差外,误差还取决于所选的频率限制和 RC 分支的数量。我们能够定义一种最佳电路描述,在保持较短计算时间的同时将误差降至最低。这项工作的科学价值在于,它允许使用开源工具快速、准确地评估 CPE 在时域中的响应,比其他方法更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid time-domain simulation of fractional capacitors with SPICE

Fractional capacitors, commonly called constant-phase elements or CPEs, are used in modeling and control applications, for example, for rechargeable batteries. Unfortunately, they are not natively supported in the well-used circuit simulator SPICE. This manuscript presents and demonstrates a modeling approach that allows users to incorporate these elements in circuits and model the response in the time domain. The novelty is that we implement for the first time a particular configuration of RC elements in parallel in a Foster-type network with SPICE in order to simulate a constant-phase element across a defined frequency range. We demonstrate that the circuit produces the required impedance spectrum in the frequency domain, and shows a power-law voltage response to a step change in current in the time domain, consistent with theory, and is able to reproduce the experimental voltage response to a complicated current profile in the time domain. The error depends on the chosen frequency limits and the number of RC branches, in addition to very small SPICE numerical errors. We are able to define an optimum circuit description that minimizes error while maintaining a short computation time. The scientific value is that the work permits rapid and accurate evaluation of the response of CPEs in the time domain, faster than other methods, using open source tools.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
期刊最新文献
A semi-classical Floquet-NEGF approach to model photon-assisted tunneling in quantum well devices Investigating the potential of germanene in solar cells: a simulation study on a-SiGe/c-Si structure Effect of interlayer spacing on the electronic and optical properties of SnS2/graphene/SnS2 sandwich heterostructure: a density functional theory study Feasibility of a 9 THz HgTe/HgCdTe quantum-well vertical-cavity surface-emitting laser Enhancing the analysis of external quantum efficiency in OLEDs utilizing thin transport layer materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1