{"title":"利用共识分布式学习改进工业物联网应用的边缘人工智能","authors":"Samuel Fidelis, Márcio Castro, Frank Siqueira","doi":"10.1007/s10617-024-09284-0","DOIUrl":null,"url":null,"abstract":"<p>Internet of Things (IoT) devices produce massive amounts of data in a very short time. Transferring these data to the cloud to be analyzed may be prohibitive for applications that require near real-time processing. One solution to meet such timing requirements is to bring most data processing closer to IoT devices (i.e., to the edge). In this context, the present work proposes a distributed architecture that meets the timing requirements imposed by Industrial IoT (IIoT) applications that need to apply Machine Learning (ML) models with high accuracy and low latency. This is done by dividing the tasks of storing and processing data into different layers—mist, fog, and cloud—using the cloud layer only for the tasks related to long-term storage of summarized data and hosting of necessary reports and dashboards. The proposed architecture employs ML inferences in the edge layer in a distributed fashion, where each edge node is either responsible for applying a different ML technique or the same technique but with a different training data set. Then, a consensus algorithm takes the ML inference results from the edge nodes to decide the result of the inference, thus improving the system’s overall accuracy. Results obtained with two different data sets show that the proposed approach can improve the accuracy of the ML models without significantly compromising the response time.</p>","PeriodicalId":50594,"journal":{"name":"Design Automation for Embedded Systems","volume":"43 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving edge AI for industrial IoT applications with distributed learning using consensus\",\"authors\":\"Samuel Fidelis, Márcio Castro, Frank Siqueira\",\"doi\":\"10.1007/s10617-024-09284-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Internet of Things (IoT) devices produce massive amounts of data in a very short time. Transferring these data to the cloud to be analyzed may be prohibitive for applications that require near real-time processing. One solution to meet such timing requirements is to bring most data processing closer to IoT devices (i.e., to the edge). In this context, the present work proposes a distributed architecture that meets the timing requirements imposed by Industrial IoT (IIoT) applications that need to apply Machine Learning (ML) models with high accuracy and low latency. This is done by dividing the tasks of storing and processing data into different layers—mist, fog, and cloud—using the cloud layer only for the tasks related to long-term storage of summarized data and hosting of necessary reports and dashboards. The proposed architecture employs ML inferences in the edge layer in a distributed fashion, where each edge node is either responsible for applying a different ML technique or the same technique but with a different training data set. Then, a consensus algorithm takes the ML inference results from the edge nodes to decide the result of the inference, thus improving the system’s overall accuracy. Results obtained with two different data sets show that the proposed approach can improve the accuracy of the ML models without significantly compromising the response time.</p>\",\"PeriodicalId\":50594,\"journal\":{\"name\":\"Design Automation for Embedded Systems\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Design Automation for Embedded Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10617-024-09284-0\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design Automation for Embedded Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10617-024-09284-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
摘要
物联网(IoT)设备能在极短的时间内产生海量数据。对于需要近乎实时处理的应用来说,将这些数据传输到云端进行分析可能会令人望而却步。满足这种时间要求的一个解决方案是将大部分数据处理工作靠近物联网设备(即边缘)。在此背景下,本研究提出了一种分布式架构,可满足工业物联网(IIoT)应用提出的时序要求,这些应用需要以高精度和低延迟应用机器学习(ML)模型。具体做法是将存储和处理数据的任务划分为不同的层--雾层、雾层和云层--云层仅用于与长期存储汇总数据以及托管必要的报告和仪表板相关的任务。建议的架构以分布式方式在边缘层采用 ML 推断,每个边缘节点负责应用不同的 ML 技术,或应用相同的技术但使用不同的训练数据集。然后,一种共识算法将边缘节点的 ML 推断结果用于决定推理结果,从而提高系统的整体准确性。利用两个不同数据集获得的结果表明,所提出的方法可以提高 ML 模型的准确性,而不会明显影响响应时间。
Improving edge AI for industrial IoT applications with distributed learning using consensus
Internet of Things (IoT) devices produce massive amounts of data in a very short time. Transferring these data to the cloud to be analyzed may be prohibitive for applications that require near real-time processing. One solution to meet such timing requirements is to bring most data processing closer to IoT devices (i.e., to the edge). In this context, the present work proposes a distributed architecture that meets the timing requirements imposed by Industrial IoT (IIoT) applications that need to apply Machine Learning (ML) models with high accuracy and low latency. This is done by dividing the tasks of storing and processing data into different layers—mist, fog, and cloud—using the cloud layer only for the tasks related to long-term storage of summarized data and hosting of necessary reports and dashboards. The proposed architecture employs ML inferences in the edge layer in a distributed fashion, where each edge node is either responsible for applying a different ML technique or the same technique but with a different training data set. Then, a consensus algorithm takes the ML inference results from the edge nodes to decide the result of the inference, thus improving the system’s overall accuracy. Results obtained with two different data sets show that the proposed approach can improve the accuracy of the ML models without significantly compromising the response time.
期刊介绍:
Embedded (electronic) systems have become the electronic engines of modern consumer and industrial devices, from automobiles to satellites, from washing machines to high-definition TVs, and from cellular phones to complete base stations. These embedded systems encompass a variety of hardware and software components which implement a wide range of functions including digital, analog and RF parts.
Although embedded systems have been designed for decades, the systematic design of such systems with well defined methodologies, automation tools and technologies has gained attention primarily in the last decade. Advances in silicon technology and increasingly demanding applications have significantly expanded the scope and complexity of embedded systems. These systems are only now becoming possible due to advances in methodologies, tools, architectures and design techniques.
Design Automation for Embedded Systems is a multidisciplinary journal which addresses the systematic design of embedded systems, focusing primarily on tools, methodologies and architectures for embedded systems, including HW/SW co-design, simulation and modeling approaches, synthesis techniques, architectures and design exploration, among others.
Design Automation for Embedded Systems offers a forum for scientist and engineers to report on their latest works on algorithms, tools, architectures, case studies and real design examples related to embedded systems hardware and software.
Design Automation for Embedded Systems is an innovative journal which distinguishes itself by welcoming high-quality papers on the methodology, tools, architectures and design of electronic embedded systems, leading to a true multidisciplinary system design journal.