风速、下垫面和种子形态特征对中国腾格里沙漠种子二次扩散的影响

IF 2.7 3区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Journal of Arid Land Pub Date : 2024-04-04 DOI:10.1007/s40333-024-0057-4
Wenjie Qu, Wenzhi Zhao, Xinguo Yang, Lei Wang, Xue Zhang, Jianjun Qu
{"title":"风速、下垫面和种子形态特征对中国腾格里沙漠种子二次扩散的影响","authors":"Wenjie Qu, Wenzhi Zhao, Xinguo Yang, Lei Wang, Xue Zhang, Jianjun Qu","doi":"10.1007/s40333-024-0057-4","DOIUrl":null,"url":null,"abstract":"<p>The maintenance of sand-fixing vegetation is important for the stability of artificial sand-fixing systems in which seed dispersal plays a key role. Based on field wind tunnel experiments using 11 common plant species on the southeastern edge of the Tengger Desert, China, we studied the secondary seed dispersal in the fixed and semi-fixed sand dunes as well as in the mobile dunes in order to understand the limitations of vegetation regeneration and the maintenance of its stability. Our results indicated that there were significant variations among the selected 11 plant species in the threshold of wind speed (TWS). The TWS of <i>Caragana korshinskii</i> was the highest among the 11 plant species, whereas that of <i>Echinops gmelinii</i> was the lowest. Seed morphological traits and underlying surface could generally explain the TWS. During the secondary seed dispersal processes, the proportions of seeds that did not disperse (no dispersal) and only dispersed over short distance (short-distance dispersal within the wind tunnel test section) were significantly higher than those of seeds that were buried (including lost seeds) and dispersed over long distance (long-distance dispersal beyond the wind tunnel test section). Compared with other habitats, the mobile dunes were the most difficult places for secondary seed dispersal. Buried seeds were the easiest to be found in the semi-fixed sand dunes, whereas fixed sand dunes were the best sites for seeds that dispersed over long distance. The results of linear mixed models showed that after controlling the dispersal distance, smaller and rounder seeds dispersed farther. Shape index and wind speed were the two significant influencing factors on the burial of seeds. The explanatory power of wind speed, underlying surface, and seed morphological traits on the seeds that did not disperse and dispersed over short distance was far greater than that on the seeds that were buried and dispersed over long distance, implying that the processes and mechanisms of burial and long-distance dispersal are more complex. In summary, most seeds in the study area either did not move, were buried, or dispersed over short distance, promoting local vegetation regeneration.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":"4 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of wind speed, underlying surface, and seed morphological traits on the secondary seed dispersal in the Tengger Desert, China\",\"authors\":\"Wenjie Qu, Wenzhi Zhao, Xinguo Yang, Lei Wang, Xue Zhang, Jianjun Qu\",\"doi\":\"10.1007/s40333-024-0057-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The maintenance of sand-fixing vegetation is important for the stability of artificial sand-fixing systems in which seed dispersal plays a key role. Based on field wind tunnel experiments using 11 common plant species on the southeastern edge of the Tengger Desert, China, we studied the secondary seed dispersal in the fixed and semi-fixed sand dunes as well as in the mobile dunes in order to understand the limitations of vegetation regeneration and the maintenance of its stability. Our results indicated that there were significant variations among the selected 11 plant species in the threshold of wind speed (TWS). The TWS of <i>Caragana korshinskii</i> was the highest among the 11 plant species, whereas that of <i>Echinops gmelinii</i> was the lowest. Seed morphological traits and underlying surface could generally explain the TWS. During the secondary seed dispersal processes, the proportions of seeds that did not disperse (no dispersal) and only dispersed over short distance (short-distance dispersal within the wind tunnel test section) were significantly higher than those of seeds that were buried (including lost seeds) and dispersed over long distance (long-distance dispersal beyond the wind tunnel test section). Compared with other habitats, the mobile dunes were the most difficult places for secondary seed dispersal. Buried seeds were the easiest to be found in the semi-fixed sand dunes, whereas fixed sand dunes were the best sites for seeds that dispersed over long distance. The results of linear mixed models showed that after controlling the dispersal distance, smaller and rounder seeds dispersed farther. Shape index and wind speed were the two significant influencing factors on the burial of seeds. The explanatory power of wind speed, underlying surface, and seed morphological traits on the seeds that did not disperse and dispersed over short distance was far greater than that on the seeds that were buried and dispersed over long distance, implying that the processes and mechanisms of burial and long-distance dispersal are more complex. In summary, most seeds in the study area either did not move, were buried, or dispersed over short distance, promoting local vegetation regeneration.</p>\",\"PeriodicalId\":49169,\"journal\":{\"name\":\"Journal of Arid Land\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Arid Land\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s40333-024-0057-4\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Arid Land","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s40333-024-0057-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

固沙植被的维持对人工固沙系统的稳定性非常重要,而种子的扩散在人工固沙系统中起着关键作用。基于在中国腾格里沙漠东南边缘利用 11 种常见植物进行的野外风洞实验,我们研究了固定沙丘、半固定沙丘和流动沙丘中种子的二次扩散,以了解植被再生及其稳定性维持的限制因素。结果表明,所选的 11 种植物在风速阈值(TWS)方面存在显著差异。在 11 种植物中,Caragana korshinskii 的风速阈值最高,而 Echinops gmelinii 的风速阈值最低。种子形态特征和底面一般可以解释种子的扩散速度。在种子的二次扩散过程中,未扩散(无扩散)和仅短距离扩散(风洞试验段内的短距离扩散)的种子比例明显高于被埋藏(包括丢失种子)和长距离扩散(风洞试验段外的长距离扩散)的种子比例。与其他生境相比,流动沙丘是种子二次扩散最困难的地方。埋藏的种子最容易在半固定沙丘中找到,而固定沙丘则是种子远距离扩散的最佳地点。线性混合模型的结果表明,在控制传播距离后,较小和较圆的种子传播得更远。形状指数和风速是影响种子埋藏的两个重要因素。风速、底面和种子形态特征对未扩散和短距离扩散的种子的解释力远远大于对被埋藏和长距离扩散的种子的解释力,这意味着埋藏和长距离扩散的过程和机制更为复杂。总之,研究区域的大多数种子要么没有移动,要么被埋藏,要么短距离扩散,促进了当地植被的再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of wind speed, underlying surface, and seed morphological traits on the secondary seed dispersal in the Tengger Desert, China

The maintenance of sand-fixing vegetation is important for the stability of artificial sand-fixing systems in which seed dispersal plays a key role. Based on field wind tunnel experiments using 11 common plant species on the southeastern edge of the Tengger Desert, China, we studied the secondary seed dispersal in the fixed and semi-fixed sand dunes as well as in the mobile dunes in order to understand the limitations of vegetation regeneration and the maintenance of its stability. Our results indicated that there were significant variations among the selected 11 plant species in the threshold of wind speed (TWS). The TWS of Caragana korshinskii was the highest among the 11 plant species, whereas that of Echinops gmelinii was the lowest. Seed morphological traits and underlying surface could generally explain the TWS. During the secondary seed dispersal processes, the proportions of seeds that did not disperse (no dispersal) and only dispersed over short distance (short-distance dispersal within the wind tunnel test section) were significantly higher than those of seeds that were buried (including lost seeds) and dispersed over long distance (long-distance dispersal beyond the wind tunnel test section). Compared with other habitats, the mobile dunes were the most difficult places for secondary seed dispersal. Buried seeds were the easiest to be found in the semi-fixed sand dunes, whereas fixed sand dunes were the best sites for seeds that dispersed over long distance. The results of linear mixed models showed that after controlling the dispersal distance, smaller and rounder seeds dispersed farther. Shape index and wind speed were the two significant influencing factors on the burial of seeds. The explanatory power of wind speed, underlying surface, and seed morphological traits on the seeds that did not disperse and dispersed over short distance was far greater than that on the seeds that were buried and dispersed over long distance, implying that the processes and mechanisms of burial and long-distance dispersal are more complex. In summary, most seeds in the study area either did not move, were buried, or dispersed over short distance, promoting local vegetation regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Arid Land
Journal of Arid Land ENVIRONMENTAL SCIENCES-
CiteScore
4.70
自引率
6.70%
发文量
768
审稿时长
3.2 months
期刊介绍: The Journal of Arid Land is an international peer-reviewed journal co-sponsored by Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences and Science Press. It aims to meet the needs of researchers, students and practitioners in sustainable development and eco-environmental management, focusing on the arid and semi-arid lands in Central Asia and the world at large. The Journal covers such topics as the dynamics of natural resources (including water, soil and land, organism and climate), the security and sustainable development of natural resources, and the environment and the ecology in arid and semi-arid lands, especially in Central Asia. Coverage also includes interactions between the atmosphere, hydrosphere, biosphere, and lithosphere, and the relationship between these natural processes and human activities. Also discussed are patterns of geography, ecology and environment; ecological improvement and environmental protection; and regional responses and feedback mechanisms to global change. The Journal of Arid Land also presents reviews, brief communications, trends and book reviews of work on these topics.
期刊最新文献
Predicting changes in the suitable habitats of six halophytic plant species in the arid areas of Northwest China Spatiotemporal landscape pattern changes and their effects on land surface temperature in greenbelt with semi-arid climate: A case study of the Erbil City, Iraq Impact of climate and human activity on NDVI of various vegetation types in the Three-River Source Region, China Effects of nitrogen deposition on the carbon budget and water stress in Central Asia under climate change Threshold friction velocity influenced by soil particle size within the Columbia Plateau, northwestern United States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1