基于自然的解决方案在极端降雨事件下降低洪水风险的潜力

IF 5.8 2区 环境科学与生态学 Q2 ENGINEERING, ENVIRONMENTAL Ambio Pub Date : 2024-04-05 DOI:10.1007/s13280-024-02005-8
Stella Manes, Mariana M. Vale, Aliny P. F. Pires
{"title":"基于自然的解决方案在极端降雨事件下降低洪水风险的潜力","authors":"Stella Manes,&nbsp;Mariana M. Vale,&nbsp;Aliny P. F. Pires","doi":"10.1007/s13280-024-02005-8","DOIUrl":null,"url":null,"abstract":"<div><p>Climate change will substantially increase extreme rainfall events, especially in the Tropics, enhancing flood risks. Such imminent risks require climate adaptation strategies to endure extreme rainfall and increase drainage systems. Here, we evaluate the potential of nature-based solutions by using an ecosystem service modeling approach, evaluating the impact of extreme rainfall events on flood risks in a large urban area and with a real-world land recovery plan. We evaluate the cost-effectiveness of four different land recovery scenarios and associated co-benefits, based on a gradient increase in area recovered and cost of implementation. Although the scenarios reveal increasing flood risk reduction and co-benefits along with greater proportion of land recovery, the most cost-effective scenario was the one with an intermediate land recovery where 30% of the study area would be reforested. We emphasize the striking benefits of nature-based solutions for flood risk reduction in cities, considering landscape scale and stakeholders’ needs.</p></div>","PeriodicalId":461,"journal":{"name":"Ambio","volume":"53 8","pages":"1168 - 1181"},"PeriodicalIF":5.8000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nature-based solutions potential for flood risk reduction under extreme rainfall events\",\"authors\":\"Stella Manes,&nbsp;Mariana M. Vale,&nbsp;Aliny P. F. Pires\",\"doi\":\"10.1007/s13280-024-02005-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Climate change will substantially increase extreme rainfall events, especially in the Tropics, enhancing flood risks. Such imminent risks require climate adaptation strategies to endure extreme rainfall and increase drainage systems. Here, we evaluate the potential of nature-based solutions by using an ecosystem service modeling approach, evaluating the impact of extreme rainfall events on flood risks in a large urban area and with a real-world land recovery plan. We evaluate the cost-effectiveness of four different land recovery scenarios and associated co-benefits, based on a gradient increase in area recovered and cost of implementation. Although the scenarios reveal increasing flood risk reduction and co-benefits along with greater proportion of land recovery, the most cost-effective scenario was the one with an intermediate land recovery where 30% of the study area would be reforested. We emphasize the striking benefits of nature-based solutions for flood risk reduction in cities, considering landscape scale and stakeholders’ needs.</p></div>\",\"PeriodicalId\":461,\"journal\":{\"name\":\"Ambio\",\"volume\":\"53 8\",\"pages\":\"1168 - 1181\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ambio\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13280-024-02005-8\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ambio","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13280-024-02005-8","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

气候变化将大幅增加极端降雨事件,尤其是在热带地区,从而增加洪水风险。这种迫在眉睫的风险要求采取气候适应战略,以承受极端降雨并增加排水系统。在此,我们采用生态系统服务建模方法评估了基于自然的解决方案的潜力,评估了极端降雨事件对大型城市地区洪水风险的影响,并结合实际的土地恢复计划。根据恢复面积和实施成本的梯度增加,我们评估了四种不同土地恢复方案的成本效益及相关共同效益。尽管这些方案显示,随着土地恢复比例的增加,洪水风险的降低和共同效益也在增加,但最具成本效益的方案是中间土地恢复方案,即 30% 的研究区域将重新造林。考虑到景观尺度和利益相关者的需求,我们强调以自然为基础的解决方案在降低城市洪水风险方面的显著效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nature-based solutions potential for flood risk reduction under extreme rainfall events

Climate change will substantially increase extreme rainfall events, especially in the Tropics, enhancing flood risks. Such imminent risks require climate adaptation strategies to endure extreme rainfall and increase drainage systems. Here, we evaluate the potential of nature-based solutions by using an ecosystem service modeling approach, evaluating the impact of extreme rainfall events on flood risks in a large urban area and with a real-world land recovery plan. We evaluate the cost-effectiveness of four different land recovery scenarios and associated co-benefits, based on a gradient increase in area recovered and cost of implementation. Although the scenarios reveal increasing flood risk reduction and co-benefits along with greater proportion of land recovery, the most cost-effective scenario was the one with an intermediate land recovery where 30% of the study area would be reforested. We emphasize the striking benefits of nature-based solutions for flood risk reduction in cities, considering landscape scale and stakeholders’ needs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ambio
Ambio 环境科学-工程:环境
CiteScore
14.30
自引率
3.10%
发文量
123
审稿时长
6 months
期刊介绍: Explores the link between anthropogenic activities and the environment, Ambio encourages multi- or interdisciplinary submissions with explicit management or policy recommendations. Ambio addresses the scientific, social, economic, and cultural factors that influence the condition of the human environment. Ambio particularly encourages multi- or inter-disciplinary submissions with explicit management or policy recommendations. For more than 45 years Ambio has brought international perspective to important developments in environmental research, policy and related activities for an international readership of specialists, generalists, students, decision-makers and interested laymen.
期刊最新文献
Recurrent discharges of non-petroleum substances from chemical tankers in Swedish marine Natura 2000 sites are against the aims of EU Directives. Reaping what we sow: Centering values in food systems transformations research. Looking back to shape the future: Trajectories and resilience of social–ecological systems in the Global South Business-as-usual trends will largely miss 2030 global conservation targets. Towards biocultural realism: Connecting conservation with historical ecology and common sense. A European perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1