自推进微粒的最新进展

IF 2.5 3区 工程技术 Journal of Hydrodynamics Pub Date : 2024-04-02 DOI:10.1007/s42241-024-0007-9
Zhen-yu Ouyang, Jian-zhong Lin
{"title":"自推进微粒的最新进展","authors":"Zhen-yu Ouyang,&nbsp;Jian-zhong Lin","doi":"10.1007/s42241-024-0007-9","DOIUrl":null,"url":null,"abstract":"<div><p>Self-propelled particles are commonly found in a large number of planktonic organisms such as bacteria, fungi, and algae in nature, and researchers have taken a long interest in exploring their swimming mechanisms for more than a century. Especially in the past 20 years, with the development of computational fluid dynamics and flow display technology, as well as the need for the design of synthetic self-propelled particles and micro-swimming devices, self-propelled particles have become the forefront and hotspot of current research in the field of fluid mechanics. This paper first introduces the swimming characteristics of common self-propelled particles, leading to a classic “squirmer” type self-propelled particle model. On this basis, a systematic introduction and summary of the theoretical and numerical simulation research of “squirmer” will be conducted. Finally, the main challenges and opportunities faced by the current research will be summarized.</p></div>","PeriodicalId":637,"journal":{"name":"Journal of Hydrodynamics","volume":"36 1","pages":"61 - 77"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent progress in self-propelled particles\",\"authors\":\"Zhen-yu Ouyang,&nbsp;Jian-zhong Lin\",\"doi\":\"10.1007/s42241-024-0007-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Self-propelled particles are commonly found in a large number of planktonic organisms such as bacteria, fungi, and algae in nature, and researchers have taken a long interest in exploring their swimming mechanisms for more than a century. Especially in the past 20 years, with the development of computational fluid dynamics and flow display technology, as well as the need for the design of synthetic self-propelled particles and micro-swimming devices, self-propelled particles have become the forefront and hotspot of current research in the field of fluid mechanics. This paper first introduces the swimming characteristics of common self-propelled particles, leading to a classic “squirmer” type self-propelled particle model. On this basis, a systematic introduction and summary of the theoretical and numerical simulation research of “squirmer” will be conducted. Finally, the main challenges and opportunities faced by the current research will be summarized.</p></div>\",\"PeriodicalId\":637,\"journal\":{\"name\":\"Journal of Hydrodynamics\",\"volume\":\"36 1\",\"pages\":\"61 - 77\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42241-024-0007-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s42241-024-0007-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自然界中的细菌、真菌和藻类等大量浮游生物中普遍存在自走颗粒,一个多世纪以来,研究人员对其游动机理的探索一直兴趣浓厚。特别是近 20 年来,随着计算流体力学和流动显示技术的发展,以及合成自泳粒子和微型游泳装置设计的需要,自泳粒子已成为当前流体力学领域研究的前沿和热点。本文首先介绍了常见自推进粒子的游动特性,并由此建立了经典的 "松鼠 "型自推进粒子模型。在此基础上,对 "squirmer "的理论和数值模拟研究进行系统的介绍和总结。最后,总结当前研究面临的主要挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent progress in self-propelled particles

Self-propelled particles are commonly found in a large number of planktonic organisms such as bacteria, fungi, and algae in nature, and researchers have taken a long interest in exploring their swimming mechanisms for more than a century. Especially in the past 20 years, with the development of computational fluid dynamics and flow display technology, as well as the need for the design of synthetic self-propelled particles and micro-swimming devices, self-propelled particles have become the forefront and hotspot of current research in the field of fluid mechanics. This paper first introduces the swimming characteristics of common self-propelled particles, leading to a classic “squirmer” type self-propelled particle model. On this basis, a systematic introduction and summary of the theoretical and numerical simulation research of “squirmer” will be conducted. Finally, the main challenges and opportunities faced by the current research will be summarized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
12.00%
发文量
2374
审稿时长
4.6 months
期刊介绍: Journal of Hydrodynamics is devoted to the publication of original theoretical, computational and experimental contributions to the all aspects of hydrodynamics. It covers advances in the naval architecture and ocean engineering, marine and ocean engineering, environmental engineering, water conservancy and hydropower engineering, energy exploration, chemical engineering, biological and biomedical engineering etc.
期刊最新文献
Heat transfer and flow structure in centrally-confined 2-D Rayleigh-Bénard convection Numerical study of air cavity characteristics of bow wave breaking of KCS ship under different speeds Effects of logjams on river hydrodynamics under inundation conditions Comparison of DES and URANS: Estimation of fluctuating pressure from URANS simulations in stilling basins Analysis of clearance flow of a fuel pump based on dynamical mode decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1