树枝状介孔二氧化硅和二氧化钛纳米球的简便合成与精细形态调控

IF 2.5 4区 材料科学 Q2 CHEMISTRY, APPLIED Journal of Porous Materials Pub Date : 2024-04-12 DOI:10.1007/s10934-024-01595-8
Yue Shu, Jianghui Tao, Yanni Wang, Liangzhu Huang, Yabin B. Wang
{"title":"树枝状介孔二氧化硅和二氧化钛纳米球的简便合成与精细形态调控","authors":"Yue Shu,&nbsp;Jianghui Tao,&nbsp;Yanni Wang,&nbsp;Liangzhu Huang,&nbsp;Yabin B. Wang","doi":"10.1007/s10934-024-01595-8","DOIUrl":null,"url":null,"abstract":"<div><p>In comparison with traditional mesoporous materials, dendritic mesoporous silica&amp;titania nanospheres (DMSTNs) with three-dimensional central radial pore channels and multiscale pores have larger pore volume, higher specific surface area, and easier accessible surfaces, making them promising carrier platforms for the applications in catalysis, drug delivery, heavy metals adsorption, etc. In this study, DMSTNs have been manufactured by a one-pot co-condensation method using titanium(diisopropoxide)bis(2,4-pentanedionate) (TDA) as the titanium source. Their morphologies and structures have been finely tuned by TDA content, reaction temperature, stirring rate, solvents, and so forth. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have been utilized to directly reveal their differences. Two typical kinds of DMSTNs synthesized at different temperatures have been compared, covering N<sub>2</sub> adsorption-desorption isotherms, X-ray photoelectron spectroscopy (XPS), Raman spectrum, ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis-DRS), Fourier Transform Infrared spectroscopy (FT-IR), etc. XPS and Raman results testify that the chemical composition and architecture of these DMSTNs resemble those of titanium silicalite-1 (TS-1) zeolite. The hydrogen yield and the corresponding rate of DMSTNs synthesized at 120 ℃ are 3.56 µmol·g<sup>-1</sup> and 0.71 µmol·g<sup>-1</sup>·h<sup>-1</sup>, being about 2.99 times higher than those of DMSNs that solely own SiO<sub>2</sub> in the skeleton. Nevertheless, DMSTNs synthesized at 70 ℃ possess a 10.08 µmol·g<sup>-1</sup> yield and a 2.04 µmol·g<sup>-1</sup>·h<sup>-1</sup> rate, nearly 8.47 times higher than those of DMSNs.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 4","pages":"1375 - 1386"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile synthesis and fine morphological tuning of dendritic mesoporous silica & titania nanospheres\",\"authors\":\"Yue Shu,&nbsp;Jianghui Tao,&nbsp;Yanni Wang,&nbsp;Liangzhu Huang,&nbsp;Yabin B. Wang\",\"doi\":\"10.1007/s10934-024-01595-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In comparison with traditional mesoporous materials, dendritic mesoporous silica&amp;titania nanospheres (DMSTNs) with three-dimensional central radial pore channels and multiscale pores have larger pore volume, higher specific surface area, and easier accessible surfaces, making them promising carrier platforms for the applications in catalysis, drug delivery, heavy metals adsorption, etc. In this study, DMSTNs have been manufactured by a one-pot co-condensation method using titanium(diisopropoxide)bis(2,4-pentanedionate) (TDA) as the titanium source. Their morphologies and structures have been finely tuned by TDA content, reaction temperature, stirring rate, solvents, and so forth. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have been utilized to directly reveal their differences. Two typical kinds of DMSTNs synthesized at different temperatures have been compared, covering N<sub>2</sub> adsorption-desorption isotherms, X-ray photoelectron spectroscopy (XPS), Raman spectrum, ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis-DRS), Fourier Transform Infrared spectroscopy (FT-IR), etc. XPS and Raman results testify that the chemical composition and architecture of these DMSTNs resemble those of titanium silicalite-1 (TS-1) zeolite. The hydrogen yield and the corresponding rate of DMSTNs synthesized at 120 ℃ are 3.56 µmol·g<sup>-1</sup> and 0.71 µmol·g<sup>-1</sup>·h<sup>-1</sup>, being about 2.99 times higher than those of DMSNs that solely own SiO<sub>2</sub> in the skeleton. Nevertheless, DMSTNs synthesized at 70 ℃ possess a 10.08 µmol·g<sup>-1</sup> yield and a 2.04 µmol·g<sup>-1</sup>·h<sup>-1</sup> rate, nearly 8.47 times higher than those of DMSNs.</p></div>\",\"PeriodicalId\":660,\"journal\":{\"name\":\"Journal of Porous Materials\",\"volume\":\"31 4\",\"pages\":\"1375 - 1386\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Porous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10934-024-01595-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01595-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

与传统介孔材料相比,具有三维中心径向孔道和多尺度孔隙的树枝状介孔二氧化硅&二氧化钛纳米球(DMSTNs)具有更大的孔隙体积、更高的比表面积和更易接近的表面,是催化、药物输送、重金属吸附等领域应用前景广阔的载体平台。本研究以二异丙氧基双(2,4-戊二酮酸)钛(TDA)为钛源,采用单锅共缩合法制备了 DMSTN。它们的形态和结构可通过 TDA 含量、反应温度、搅拌速率、溶剂等因素进行微调。扫描电子显微镜(SEM)和透射电子显微镜(TEM)被用来直接揭示它们之间的差异。比较了在不同温度下合成的两种典型 DMSTN,包括 N2 吸附-解吸等温线、X 射线光电子能谱(XPS)、拉曼光谱、紫外-可见漫反射光谱(UV-Vis-DRS)、傅立叶变换红外光谱(FT-IR)等。XPS 和拉曼结果表明,这些 DMSTN 的化学成分和结构与硅酸钛沸石-1(TS-1)相似。在 120 ℃ 下合成的 DMSTNs 的产氢量和相应速率分别为 3.56 µmol-g-1 和 0.71 µmol-g-1-h-1,比骨架中仅含有 SiO2 的 DMSNs 高出约 2.99 倍。不过,在 70 ℃ 下合成的 DMSTN 的产率为 10.08 µmol-g-1 ,速率为 2.04 µmol-g-1-h-1,比 DMSN 高出近 8.47 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Facile synthesis and fine morphological tuning of dendritic mesoporous silica & titania nanospheres

In comparison with traditional mesoporous materials, dendritic mesoporous silica&titania nanospheres (DMSTNs) with three-dimensional central radial pore channels and multiscale pores have larger pore volume, higher specific surface area, and easier accessible surfaces, making them promising carrier platforms for the applications in catalysis, drug delivery, heavy metals adsorption, etc. In this study, DMSTNs have been manufactured by a one-pot co-condensation method using titanium(diisopropoxide)bis(2,4-pentanedionate) (TDA) as the titanium source. Their morphologies and structures have been finely tuned by TDA content, reaction temperature, stirring rate, solvents, and so forth. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have been utilized to directly reveal their differences. Two typical kinds of DMSTNs synthesized at different temperatures have been compared, covering N2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy (XPS), Raman spectrum, ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis-DRS), Fourier Transform Infrared spectroscopy (FT-IR), etc. XPS and Raman results testify that the chemical composition and architecture of these DMSTNs resemble those of titanium silicalite-1 (TS-1) zeolite. The hydrogen yield and the corresponding rate of DMSTNs synthesized at 120 ℃ are 3.56 µmol·g-1 and 0.71 µmol·g-1·h-1, being about 2.99 times higher than those of DMSNs that solely own SiO2 in the skeleton. Nevertheless, DMSTNs synthesized at 70 ℃ possess a 10.08 µmol·g-1 yield and a 2.04 µmol·g-1·h-1 rate, nearly 8.47 times higher than those of DMSNs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Porous Materials
Journal of Porous Materials 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.70%
发文量
203
审稿时长
2.6 months
期刊介绍: The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials. Porous materials include microporous materials with 50 nm pores. Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.
期刊最新文献
Correction: One-step synthesis of CuO/MCM-41 nanocomposites and their application in photocatalytic degradation of dyes Modification of SBA-15 for stabilizing supported oxides Lotus leaf-derived capacitive carbon for zinc-ion hybrid supercapacitors prepared by one-step molten salt carbonization Influence of various templates on the performance of MFI zeolite in catalytic synthesis of trioxane Facile synthesis of copper sulfide loaded mesoporous organosilica nanospheres with a triple-shelled hollow structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1