Patrik Boura, Alexandr Zubov, Bart Van der Bruggen, Juraj Kosek
{"title":"溶剂去除方法对通过热诱导相分离制备的聚苯乙烯多孔结构形态的影响","authors":"Patrik Boura, Alexandr Zubov, Bart Van der Bruggen, Juraj Kosek","doi":"10.1007/s10934-024-01597-6","DOIUrl":null,"url":null,"abstract":"<div><p>Thermally induced phase separation (TIPS) allows preparation of nano and micro-porous structured materials for various applications. The literature thoroughly examines the impact of initial polymer solution concentration and cooling rate on the products morphology. On the contrary, the influence of the solvent removal methods was so far researched scarcely. Hence, we compare both qualitatively and quantitatively the effects of the solvent removal method on pore size distribution, structure, porosity, and thermal conductivity. Our study was carried out with samples prepared by TIPS from polystyrene/cyclohexane solutions employing either extraction agent or lyophilization at different solvent removal temperatures. Materials exhibited interconnected pore structure, implying good sound insulation properties, and had low thermal conductivity, offering the combination of thermal and sound insulation in one layer of material. Pore sizes after lyophilization were up to two times larger than after solvent removal by an extraction agent. On the other hand, the use of extraction agent led up to 10% porosity decrease with average porosity after lyophilization being above 82%. Our findings demonstrate that the solvent removal method is an important parameter during TIPS and that pros and cons of both methods should be carefully considered to obtain optimal material and TIPS process economy.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 4","pages":"1425 - 1435"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10934-024-01597-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Influence of the solvent removal method on the morphology of polystyrene porous structures prepared via thermally induced phase separation\",\"authors\":\"Patrik Boura, Alexandr Zubov, Bart Van der Bruggen, Juraj Kosek\",\"doi\":\"10.1007/s10934-024-01597-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermally induced phase separation (TIPS) allows preparation of nano and micro-porous structured materials for various applications. The literature thoroughly examines the impact of initial polymer solution concentration and cooling rate on the products morphology. On the contrary, the influence of the solvent removal methods was so far researched scarcely. Hence, we compare both qualitatively and quantitatively the effects of the solvent removal method on pore size distribution, structure, porosity, and thermal conductivity. Our study was carried out with samples prepared by TIPS from polystyrene/cyclohexane solutions employing either extraction agent or lyophilization at different solvent removal temperatures. Materials exhibited interconnected pore structure, implying good sound insulation properties, and had low thermal conductivity, offering the combination of thermal and sound insulation in one layer of material. Pore sizes after lyophilization were up to two times larger than after solvent removal by an extraction agent. On the other hand, the use of extraction agent led up to 10% porosity decrease with average porosity after lyophilization being above 82%. Our findings demonstrate that the solvent removal method is an important parameter during TIPS and that pros and cons of both methods should be carefully considered to obtain optimal material and TIPS process economy.</p></div>\",\"PeriodicalId\":660,\"journal\":{\"name\":\"Journal of Porous Materials\",\"volume\":\"31 4\",\"pages\":\"1425 - 1435\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10934-024-01597-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Porous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10934-024-01597-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01597-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Influence of the solvent removal method on the morphology of polystyrene porous structures prepared via thermally induced phase separation
Thermally induced phase separation (TIPS) allows preparation of nano and micro-porous structured materials for various applications. The literature thoroughly examines the impact of initial polymer solution concentration and cooling rate on the products morphology. On the contrary, the influence of the solvent removal methods was so far researched scarcely. Hence, we compare both qualitatively and quantitatively the effects of the solvent removal method on pore size distribution, structure, porosity, and thermal conductivity. Our study was carried out with samples prepared by TIPS from polystyrene/cyclohexane solutions employing either extraction agent or lyophilization at different solvent removal temperatures. Materials exhibited interconnected pore structure, implying good sound insulation properties, and had low thermal conductivity, offering the combination of thermal and sound insulation in one layer of material. Pore sizes after lyophilization were up to two times larger than after solvent removal by an extraction agent. On the other hand, the use of extraction agent led up to 10% porosity decrease with average porosity after lyophilization being above 82%. Our findings demonstrate that the solvent removal method is an important parameter during TIPS and that pros and cons of both methods should be carefully considered to obtain optimal material and TIPS process economy.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.