Xiaoqin Cai, Nian Wu, Fangxiang Song, Honghuan Luo, Tingxian Li, Yibing Yan, Songye Li, Yan Li
{"title":"近红外光介导的 HMTNs@PMO-DOX/ICG@HA 药物复合纳米颗粒实现了肿瘤化学疗法和光热疗法的协同组合","authors":"Xiaoqin Cai, Nian Wu, Fangxiang Song, Honghuan Luo, Tingxian Li, Yibing Yan, Songye Li, Yan Li","doi":"10.1007/s10934-024-01588-7","DOIUrl":null,"url":null,"abstract":"<div><p>Combination therapy for cancers can fully utilize each treatment method’s benefits in order to maximize anti-tumor actions and hence produce superior therapeutic outcomes. In this study, HMTNs@PMO@HA composite nanoparticles, a pH/NIR dual-responsive chemo-photothermal platform, were constructed. The hollow mesoporous titanium dioxide nanoparticles (HMTNs) were prepared by silica-protected calcination and alkali etching, and the periodic mesoporous organosilica (PMO) was coated on top of them to improve the biocompatibility, and then modified by hyaluronic acid (HA) to improve the targeting and cellular uptake of the nanoparticles. This chemo-photothermal platform combined the chemotherapeutic drug doxorubicin (DOX) with the photothermal agent indocyanine green (ICG) to investigate their inhibitory effects on breast cancer cells (MCF-7). Drug loading and release experiments revealed that the platform had a high loading rate of doxorubicin and indocyanine green (DOX: 40.21%; ICG: 25.78%), and the cumulative release rate of the drugs increased in an acidic environment. The results of the photothermal effect evaluation in vitro indicated that the nano-platform had a good photothermal effect. Cytotoxicity and apoptosis assays showed that the nanoparticles combined with NIR had a good inhibitory effect on breast cancer cells (cell viability: 27.68%; apoptosis rate: 43.4%). The above results indicated that the combination therapy used by this nano platform provided high therapeutic efficiency for treating tumors and offered a feasible strategy for combining tumor-targeting with chemo-photothermal therapy.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 4","pages":"1305 - 1319"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-infrared light-mediated HMTNs@PMO-DOX/ICG@HA drug composite nanoparticles enable a synergistic combination of chemical and photothermal therapy for tumors\",\"authors\":\"Xiaoqin Cai, Nian Wu, Fangxiang Song, Honghuan Luo, Tingxian Li, Yibing Yan, Songye Li, Yan Li\",\"doi\":\"10.1007/s10934-024-01588-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Combination therapy for cancers can fully utilize each treatment method’s benefits in order to maximize anti-tumor actions and hence produce superior therapeutic outcomes. In this study, HMTNs@PMO@HA composite nanoparticles, a pH/NIR dual-responsive chemo-photothermal platform, were constructed. The hollow mesoporous titanium dioxide nanoparticles (HMTNs) were prepared by silica-protected calcination and alkali etching, and the periodic mesoporous organosilica (PMO) was coated on top of them to improve the biocompatibility, and then modified by hyaluronic acid (HA) to improve the targeting and cellular uptake of the nanoparticles. This chemo-photothermal platform combined the chemotherapeutic drug doxorubicin (DOX) with the photothermal agent indocyanine green (ICG) to investigate their inhibitory effects on breast cancer cells (MCF-7). Drug loading and release experiments revealed that the platform had a high loading rate of doxorubicin and indocyanine green (DOX: 40.21%; ICG: 25.78%), and the cumulative release rate of the drugs increased in an acidic environment. The results of the photothermal effect evaluation in vitro indicated that the nano-platform had a good photothermal effect. Cytotoxicity and apoptosis assays showed that the nanoparticles combined with NIR had a good inhibitory effect on breast cancer cells (cell viability: 27.68%; apoptosis rate: 43.4%). The above results indicated that the combination therapy used by this nano platform provided high therapeutic efficiency for treating tumors and offered a feasible strategy for combining tumor-targeting with chemo-photothermal therapy.</p></div>\",\"PeriodicalId\":660,\"journal\":{\"name\":\"Journal of Porous Materials\",\"volume\":\"31 4\",\"pages\":\"1305 - 1319\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Porous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10934-024-01588-7\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01588-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Near-infrared light-mediated HMTNs@PMO-DOX/ICG@HA drug composite nanoparticles enable a synergistic combination of chemical and photothermal therapy for tumors
Combination therapy for cancers can fully utilize each treatment method’s benefits in order to maximize anti-tumor actions and hence produce superior therapeutic outcomes. In this study, HMTNs@PMO@HA composite nanoparticles, a pH/NIR dual-responsive chemo-photothermal platform, were constructed. The hollow mesoporous titanium dioxide nanoparticles (HMTNs) were prepared by silica-protected calcination and alkali etching, and the periodic mesoporous organosilica (PMO) was coated on top of them to improve the biocompatibility, and then modified by hyaluronic acid (HA) to improve the targeting and cellular uptake of the nanoparticles. This chemo-photothermal platform combined the chemotherapeutic drug doxorubicin (DOX) with the photothermal agent indocyanine green (ICG) to investigate their inhibitory effects on breast cancer cells (MCF-7). Drug loading and release experiments revealed that the platform had a high loading rate of doxorubicin and indocyanine green (DOX: 40.21%; ICG: 25.78%), and the cumulative release rate of the drugs increased in an acidic environment. The results of the photothermal effect evaluation in vitro indicated that the nano-platform had a good photothermal effect. Cytotoxicity and apoptosis assays showed that the nanoparticles combined with NIR had a good inhibitory effect on breast cancer cells (cell viability: 27.68%; apoptosis rate: 43.4%). The above results indicated that the combination therapy used by this nano platform provided high therapeutic efficiency for treating tumors and offered a feasible strategy for combining tumor-targeting with chemo-photothermal therapy.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.