单像素可重构石墨烯元表面支持的超宽带太赫兹指纹增强传感和反转模型

IF 15.7 Q1 OPTICS PhotoniX Pub Date : 2024-04-15 DOI:10.1186/s43074-024-00129-4
Bingwei Liu, Yan Peng, YuFan Hao, Yiming Zhu, Shengjiang Chang, Songlin Zhuang
{"title":"单像素可重构石墨烯元表面支持的超宽带太赫兹指纹增强传感和反转模型","authors":"Bingwei Liu, Yan Peng, YuFan Hao, Yiming Zhu, Shengjiang Chang, Songlin Zhuang","doi":"10.1186/s43074-024-00129-4","DOIUrl":null,"url":null,"abstract":"<p>The molecular fingerprint sensing technology based on metasurface has unique attraction in the biomedical field. However, in the terahertz (THz) band, existing metasurface designs based on multi-pixel or angle multiplexing usually require more analyte amount or possess a narrower tuning bandwidth. Here, we propose a novel single-pixel graphene metasurface. Based on the synchronous voltage tuning, this metasurface enables ultra-wideband (<span>\\(\\sim\\)</span> 1.5 THz) fingerprint enhancement sensing of trace analytes, including chiral optical isomers, with a limit of detection (LoD) ≤ 0.64 μg/mm<sup>2</sup>. The enhancement of the fingerprint signal (<span>\\(\\sim\\)</span> 17.4 dB) originates from the electromagnetically induced transparency (EIT) effect excited by the metasurface, and the ideal overlap between the light field constrained by single-layer graphene (SLG) and ultra-thin analyte. Meanwhile, due to the unique nonlinear enhancement mechanism in graphene tuning, the absorption envelope distortion is inevitable. To solve this problem, a universal fingerprint spectrum inversion model is developed for the first time, and the restoration of standard fingerprints reaches R<sub>max</sub><sup>2</sup> ≥ 0.99. In addition, the asynchronous voltage tuning of the metasurface provides an opportunity for realizing the dynamic reconfiguration of EIT resonance and the slow light modulation in the broadband range. This work builds a bridge for ultra-wideband THz fingerprint sensing of trace analytes, and has potential applications in active spatial light modulators, slow light devices and dynamic imaging equipments.</p>","PeriodicalId":93483,"journal":{"name":"PhotoniX","volume":"6 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-wideband terahertz fingerprint enhancement sensing and inversion model supported by single-pixel reconfigurable graphene metasurface\",\"authors\":\"Bingwei Liu, Yan Peng, YuFan Hao, Yiming Zhu, Shengjiang Chang, Songlin Zhuang\",\"doi\":\"10.1186/s43074-024-00129-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The molecular fingerprint sensing technology based on metasurface has unique attraction in the biomedical field. However, in the terahertz (THz) band, existing metasurface designs based on multi-pixel or angle multiplexing usually require more analyte amount or possess a narrower tuning bandwidth. Here, we propose a novel single-pixel graphene metasurface. Based on the synchronous voltage tuning, this metasurface enables ultra-wideband (<span>\\\\(\\\\sim\\\\)</span> 1.5 THz) fingerprint enhancement sensing of trace analytes, including chiral optical isomers, with a limit of detection (LoD) ≤ 0.64 μg/mm<sup>2</sup>. The enhancement of the fingerprint signal (<span>\\\\(\\\\sim\\\\)</span> 17.4 dB) originates from the electromagnetically induced transparency (EIT) effect excited by the metasurface, and the ideal overlap between the light field constrained by single-layer graphene (SLG) and ultra-thin analyte. Meanwhile, due to the unique nonlinear enhancement mechanism in graphene tuning, the absorption envelope distortion is inevitable. To solve this problem, a universal fingerprint spectrum inversion model is developed for the first time, and the restoration of standard fingerprints reaches R<sub>max</sub><sup>2</sup> ≥ 0.99. In addition, the asynchronous voltage tuning of the metasurface provides an opportunity for realizing the dynamic reconfiguration of EIT resonance and the slow light modulation in the broadband range. This work builds a bridge for ultra-wideband THz fingerprint sensing of trace analytes, and has potential applications in active spatial light modulators, slow light devices and dynamic imaging equipments.</p>\",\"PeriodicalId\":93483,\"journal\":{\"name\":\"PhotoniX\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PhotoniX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43074-024-00129-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhotoniX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43074-024-00129-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

基于元表面的分子指纹传感技术在生物医学领域具有独特的吸引力。然而,在太赫兹(THz)波段,现有的基于多像素或角度复用的元表面设计通常需要更多的分析物量或更窄的调谐带宽。在此,我们提出了一种新型单像素石墨烯元表面。基于同步电压调谐,该元表面可实现包括手性光学异构体在内的痕量分析物的超宽带(1.5 THz)指纹增强传感,其检测限(LoD)≤ 0.64 μg/mm2。指纹信号的增强(17.4 dB)源于元表面激发的电磁诱导透明(EIT)效应,以及单层石墨烯(SLG)和超薄分析物所限制的光场之间的理想重叠。同时,由于石墨烯调谐中独特的非线性增强机制,吸收包络畸变不可避免。为解决这一问题,首次建立了通用的指纹谱反演模型,标准指纹的还原度达到 Rmax2 ≥ 0.99。此外,元表面的异步电压调谐为实现 EIT 共振的动态重构和宽带范围内的慢光调制提供了机会。这项研究为痕量分析物的超宽带太赫兹指纹传感搭建了一座桥梁,并有望应用于有源空间光调制器、慢光器件和动态成像设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultra-wideband terahertz fingerprint enhancement sensing and inversion model supported by single-pixel reconfigurable graphene metasurface

The molecular fingerprint sensing technology based on metasurface has unique attraction in the biomedical field. However, in the terahertz (THz) band, existing metasurface designs based on multi-pixel or angle multiplexing usually require more analyte amount or possess a narrower tuning bandwidth. Here, we propose a novel single-pixel graphene metasurface. Based on the synchronous voltage tuning, this metasurface enables ultra-wideband (\(\sim\) 1.5 THz) fingerprint enhancement sensing of trace analytes, including chiral optical isomers, with a limit of detection (LoD) ≤ 0.64 μg/mm2. The enhancement of the fingerprint signal (\(\sim\) 17.4 dB) originates from the electromagnetically induced transparency (EIT) effect excited by the metasurface, and the ideal overlap between the light field constrained by single-layer graphene (SLG) and ultra-thin analyte. Meanwhile, due to the unique nonlinear enhancement mechanism in graphene tuning, the absorption envelope distortion is inevitable. To solve this problem, a universal fingerprint spectrum inversion model is developed for the first time, and the restoration of standard fingerprints reaches Rmax2 ≥ 0.99. In addition, the asynchronous voltage tuning of the metasurface provides an opportunity for realizing the dynamic reconfiguration of EIT resonance and the slow light modulation in the broadband range. This work builds a bridge for ultra-wideband THz fingerprint sensing of trace analytes, and has potential applications in active spatial light modulators, slow light devices and dynamic imaging equipments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Deep-learning-enabled temporally super-resolved multiplexed fringe projection profilometry: high-speed kHz 3D imaging with low-speed camera Optical steelyard: high-resolution and wide-range refractive index sensing by synergizing Fabry–Perot interferometer with metafibers Ultra-low-defect homoepitaxial micro-LEDs with enhanced efficiency and monochromaticity for high-PPI AR/MR displays Real-time monitoring of fast gas dynamics with a single-molecule resolution by frequency-comb-referenced plasmonic phase spectroscopy Ultrahigh-fidelity full-color holographic display via color-aware optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1