{"title":"利用模糊深度神经网络进行不平衡类别的多标签分类","authors":"Federico Succetti, Antonello Rosato, Massimo Panella","doi":"10.3233/ica-240736","DOIUrl":null,"url":null,"abstract":"Multi-label classification is an advantageous technique for managing uncertainty in classification problems where each data instance is associated with several labels simultaneously. Such situations are frequent in real-world scenarios, where decisions rely on imprecise or noisy data and adaptableclassification methods are preferred. However, the problem of class imbalance represents a common characteristic of several multi-label datasets, in which the distribution of samples and their corresponding labels is non-uniform across the data space. In this paper, we propose a multi-label classification approach utilizing fuzzy logic in order to deal with the class imbalance problem. To eliminate the need for an expert to determine the logical rules of inference, deep neural networks are adopted, which have proven to be exceptionally effective for such problems. By combining both fuzzy inference systems and deep neural networks, the strengths and weaknesses of each approach can be mitigated. As a further development, a symbolic representation of time series is put in place to reduce data dimensionality and speed up the training procedure. This allows for more flexibility in model application, in particular with respect to time constraints arising from the causality of observed time series. Tests carried out on a multi-label classification dataset related to the current and voltage profiles of several household appliances show that the proposed model outperforms four baseline models for time series classification.","PeriodicalId":50358,"journal":{"name":"Integrated Computer-Aided Engineering","volume":"65 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-label classification with imbalanced classes by fuzzy deep neural networks\",\"authors\":\"Federico Succetti, Antonello Rosato, Massimo Panella\",\"doi\":\"10.3233/ica-240736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-label classification is an advantageous technique for managing uncertainty in classification problems where each data instance is associated with several labels simultaneously. Such situations are frequent in real-world scenarios, where decisions rely on imprecise or noisy data and adaptableclassification methods are preferred. However, the problem of class imbalance represents a common characteristic of several multi-label datasets, in which the distribution of samples and their corresponding labels is non-uniform across the data space. In this paper, we propose a multi-label classification approach utilizing fuzzy logic in order to deal with the class imbalance problem. To eliminate the need for an expert to determine the logical rules of inference, deep neural networks are adopted, which have proven to be exceptionally effective for such problems. By combining both fuzzy inference systems and deep neural networks, the strengths and weaknesses of each approach can be mitigated. As a further development, a symbolic representation of time series is put in place to reduce data dimensionality and speed up the training procedure. This allows for more flexibility in model application, in particular with respect to time constraints arising from the causality of observed time series. Tests carried out on a multi-label classification dataset related to the current and voltage profiles of several household appliances show that the proposed model outperforms four baseline models for time series classification.\",\"PeriodicalId\":50358,\"journal\":{\"name\":\"Integrated Computer-Aided Engineering\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Computer-Aided Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ica-240736\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Computer-Aided Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ica-240736","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Multi-label classification with imbalanced classes by fuzzy deep neural networks
Multi-label classification is an advantageous technique for managing uncertainty in classification problems where each data instance is associated with several labels simultaneously. Such situations are frequent in real-world scenarios, where decisions rely on imprecise or noisy data and adaptableclassification methods are preferred. However, the problem of class imbalance represents a common characteristic of several multi-label datasets, in which the distribution of samples and their corresponding labels is non-uniform across the data space. In this paper, we propose a multi-label classification approach utilizing fuzzy logic in order to deal with the class imbalance problem. To eliminate the need for an expert to determine the logical rules of inference, deep neural networks are adopted, which have proven to be exceptionally effective for such problems. By combining both fuzzy inference systems and deep neural networks, the strengths and weaknesses of each approach can be mitigated. As a further development, a symbolic representation of time series is put in place to reduce data dimensionality and speed up the training procedure. This allows for more flexibility in model application, in particular with respect to time constraints arising from the causality of observed time series. Tests carried out on a multi-label classification dataset related to the current and voltage profiles of several household appliances show that the proposed model outperforms four baseline models for time series classification.
期刊介绍:
Integrated Computer-Aided Engineering (ICAE) was founded in 1993. "Based on the premise that interdisciplinary thinking and synergistic collaboration of disciplines can solve complex problems, open new frontiers, and lead to true innovations and breakthroughs, the cornerstone of industrial competitiveness and advancement of the society" as noted in the inaugural issue of the journal.
The focus of ICAE is the integration of leading edge and emerging computer and information technologies for innovative solution of engineering problems. The journal fosters interdisciplinary research and presents a unique forum for innovative computer-aided engineering. It also publishes novel industrial applications of CAE, thus helping to bring new computational paradigms from research labs and classrooms to reality. Areas covered by the journal include (but are not limited to) artificial intelligence, advanced signal processing, biologically inspired computing, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, intelligent and adaptive systems, internet-based technologies, knowledge discovery and engineering, machine learning, mechatronics, mobile computing, multimedia technologies, networking, neural network computing, object-oriented systems, optimization and search, parallel processing, robotics virtual reality, and visualization techniques.