{"title":"小型双体无人水面飞行器不确定动力学的最大似然估计","authors":"Violet Mwaffo;Paul Frontera;Matthew Feemster;Sean Kragelund","doi":"10.1109/TCST.2024.3378959","DOIUrl":null,"url":null,"abstract":"Unmanned surface vehicles (USVs) operating in marine environments are often subjected to external disturbances, such as water waves and currents that might considerably affect system dynamics. Due to the complexity of existing tools used to capture their effects on system dynamics, they are often discarded or at most replaced by a mild form of noise. Indeed, traditional estimation methods often rely on complex procedures involving a battery of experiments conducted both in laboratory settings and outdoors in actual operating environments, followed by intensive hydrodynamics computations. Stochastic noise has been shown in the literature to better capture the uncertainties acting on marine vehicles. In this work, we propose a stochastic model to recreate the disturbances observed on small catamaran USVs moving at lower speed in their operating environment. A maximum likelihood method is proposed to identify the noisy dynamics of the USVs using limited amounts of experimental data gathered in the operating environment. Analytical expressions are derived which reduce the computational effort required to estimate model parameters. The proposed framework is shown to be effective at replicating the distribution of the noise and predicting the future trajectories of the USVs by a few time horizons in actual operating environments.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 5","pages":"1928-1935"},"PeriodicalIF":4.9000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum Likelihood Estimation of the Uncertain Dynamics of Small Catamaran Unmanned Surface Vehicles\",\"authors\":\"Violet Mwaffo;Paul Frontera;Matthew Feemster;Sean Kragelund\",\"doi\":\"10.1109/TCST.2024.3378959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned surface vehicles (USVs) operating in marine environments are often subjected to external disturbances, such as water waves and currents that might considerably affect system dynamics. Due to the complexity of existing tools used to capture their effects on system dynamics, they are often discarded or at most replaced by a mild form of noise. Indeed, traditional estimation methods often rely on complex procedures involving a battery of experiments conducted both in laboratory settings and outdoors in actual operating environments, followed by intensive hydrodynamics computations. Stochastic noise has been shown in the literature to better capture the uncertainties acting on marine vehicles. In this work, we propose a stochastic model to recreate the disturbances observed on small catamaran USVs moving at lower speed in their operating environment. A maximum likelihood method is proposed to identify the noisy dynamics of the USVs using limited amounts of experimental data gathered in the operating environment. Analytical expressions are derived which reduce the computational effort required to estimate model parameters. The proposed framework is shown to be effective at replicating the distribution of the noise and predicting the future trajectories of the USVs by a few time horizons in actual operating environments.\",\"PeriodicalId\":13103,\"journal\":{\"name\":\"IEEE Transactions on Control Systems Technology\",\"volume\":\"32 5\",\"pages\":\"1928-1935\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Control Systems Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10490217/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10490217/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Maximum Likelihood Estimation of the Uncertain Dynamics of Small Catamaran Unmanned Surface Vehicles
Unmanned surface vehicles (USVs) operating in marine environments are often subjected to external disturbances, such as water waves and currents that might considerably affect system dynamics. Due to the complexity of existing tools used to capture their effects on system dynamics, they are often discarded or at most replaced by a mild form of noise. Indeed, traditional estimation methods often rely on complex procedures involving a battery of experiments conducted both in laboratory settings and outdoors in actual operating environments, followed by intensive hydrodynamics computations. Stochastic noise has been shown in the literature to better capture the uncertainties acting on marine vehicles. In this work, we propose a stochastic model to recreate the disturbances observed on small catamaran USVs moving at lower speed in their operating environment. A maximum likelihood method is proposed to identify the noisy dynamics of the USVs using limited amounts of experimental data gathered in the operating environment. Analytical expressions are derived which reduce the computational effort required to estimate model parameters. The proposed framework is shown to be effective at replicating the distribution of the noise and predicting the future trajectories of the USVs by a few time horizons in actual operating environments.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.